Artículos de revistas sobre el tema "Network fault model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Network fault model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bae, Jangsik, Meonghun Lee y Changsun Shin. "A Data-Based Fault-Detection Model for Wireless Sensor Networks". Sustainability 11, n.º 21 (5 de noviembre de 2019): 6171. http://dx.doi.org/10.3390/su11216171.
Texto completoHan, Bing, Xiaohui Yang, Yafeng Ren y Wanggui Lan. "Comparisons of different deep learning-based methods on fault diagnosis for geared system". International Journal of Distributed Sensor Networks 15, n.º 11 (noviembre de 2019): 155014771988816. http://dx.doi.org/10.1177/1550147719888169.
Texto completoShadi, Mohammad Reza, Hamid Mirshekali, Rahman Dashti, Mohammad-Taghi Ameli y Hamid Reza Shaker. "A Parameter-Free Approach for Fault Section Detection on Distribution Networks Employing Gated Recurrent Unit". Energies 14, n.º 19 (5 de octubre de 2021): 6361. http://dx.doi.org/10.3390/en14196361.
Texto completoLi, Zhi Chun. "A Simple SOM Neural Network Based Fault Detection Model for Fault Diagnosis of Rolling Bearings". Applied Mechanics and Materials 397-400 (septiembre de 2013): 1321–25. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.1321.
Texto completoWang, Zhenxing, Haijun Zhang, Huayang Wang, Zhijun Bi, Xiujing He, Qi Wang y Xiangzong Yu. "Analysis of modeling and fault line selection method for Single-phase Intermittent fault of distribution network". Journal of Physics: Conference Series 2355, n.º 1 (1 de octubre de 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2355/1/012047.
Texto completoShakya, Subarna. "Pollination Inspired Clustering Model for Wireless Sensor Network Optimization". September 2021 3, n.º 3 (29 de noviembre de 2021): 196–207. http://dx.doi.org/10.36548/jsws.2021.3.006.
Texto completoNai-Quan Su, Nai-Quan Su, Qing-Hua Zhang Nai-Quan Su, Shao-Lin Hu Qing-Hua Zhang, Xiao-Xiao Chang Shao-Lin Hu y Mei-Chao Chen Xiao-Xiao Chang. "Petrochemical Gearbox Fault Location and Diagnosis Method Based on Distributed Bayesian Model and Neural Network". 電腦學刊 33, n.º 3 (junio de 2022): 159–69. http://dx.doi.org/10.53106/199115992022063303013.
Texto completoPatan, Krzysztof y Józef Korbicz. "Nonlinear model predictive control of a boiler unit: A fault tolerant control study". International Journal of Applied Mathematics and Computer Science 22, n.º 1 (1 de marzo de 2012): 225–37. http://dx.doi.org/10.2478/v10006-012-0017-6.
Texto completoBasnet, Barun, Hyunjun Chun y Junho Bang. "An Intelligent Fault Detection Model for Fault Detection in Photovoltaic Systems". Journal of Sensors 2020 (9 de junio de 2020): 1–11. http://dx.doi.org/10.1155/2020/6960328.
Texto completoZhang, Wubing. "Data Mining Technology for Equipment Machinery and Information Network Data Resources". Security and Communication Networks 2022 (3 de agosto de 2022): 1–8. http://dx.doi.org/10.1155/2022/5928611.
Texto completoHoang, Ngoc-Bach y Hee-Jun Kang. "Incipient wheel fault identification in mobile robots using neural networks and nonlinear least squares". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, n.º 3 (9 de agosto de 2016): 446–58. http://dx.doi.org/10.1177/0954406215616650.
Texto completoJha, Sudan, Sultan Ahmad, Deepak Prashar, Bashir Salah, Majid Bashir, Inam Ullah y Nermin M. Salem. "A Proposed Waiting Time Algorithm for a Prediction and Prevention System of Traffic Accidents Using Smart Sensors". Electronics 11, n.º 11 (2 de junio de 2022): 1765. http://dx.doi.org/10.3390/electronics11111765.
Texto completoLakehal, Abdelaziz y Fouad Tachi. "Bayesian Duval Triangle Method for Fault Prediction and Assessment of Oil Immersed Transformers". Measurement and Control 50, n.º 4 (mayo de 2017): 103–9. http://dx.doi.org/10.1177/0020294017707461.
Texto completoWang, Qianyu, Dong Cao, Shuyuan Zhang, Yuzan Zhou y Lina Yao. "The Cable Fault Diagnosis for XLPE Cable Based on 1DCNNs-BiLSTM Network". Journal of Control Science and Engineering 2023 (19 de enero de 2023): 1–10. http://dx.doi.org/10.1155/2023/1068078.
Texto completoCui, Hao Yang, Yong Peng Xu, Jun Jie Yang, Jun Dong Zeng y Zhong Tang. "A Fault Diagnosis Method in VSC-HVDC Simulation System Based on BRBP Neural Networks". Advanced Materials Research 860-863 (diciembre de 2013): 2269–74. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.2269.
Texto completoSu, Shan y Bing Sheng Yan. "Fault Location Algorithm of the 10kV Rural Network Based on Power Frequency Communication". Advanced Materials Research 722 (julio de 2013): 287–91. http://dx.doi.org/10.4028/www.scientific.net/amr.722.287.
Texto completoGuoyan, Huang, Wang Qian, Liu Xinqian, Hao Xiaobing y Yan Huaizhi. "Mining the Key Nodes from Software Network Based on Fault Accumulation and Propagation". Security and Communication Networks 2019 (7 de marzo de 2019): 1–11. http://dx.doi.org/10.1155/2019/7140480.
Texto completoFarsoni, Saverio, Silvio Simani y Paolo Castaldi. "Fuzzy and Neural Network Approaches to Wind Turbine Fault Diagnosis". Applied Sciences 11, n.º 11 (29 de mayo de 2021): 5035. http://dx.doi.org/10.3390/app11115035.
Texto completoRobson, Stephen, Abderrahmane Haddad y Huw Griffiths. "Traveling Wave Fault Location Using Layer Peeling". Energies 12, n.º 1 (30 de diciembre de 2018): 126. http://dx.doi.org/10.3390/en12010126.
Texto completoDorsett, Jacob H., Elizabeth H. Madden, Scott T. Marshall y Michele L. Cooke. "Mechanical Models Suggest Fault Linkage through the Imperial Valley, California, U.S.A." Bulletin of the Seismological Society of America 109, n.º 4 (11 de junio de 2019): 1217–34. http://dx.doi.org/10.1785/0120180303.
Texto completoLal, Jaya Dipti y Dolly Thankachan. "HBMFTEFR: Design of a Hybrid Bioinspired Model for Fault-Tolerant Energy Harvesting Networks via Fuzzy Rule Checks". International Journal on Recent and Innovation Trends in Computing and Communication 10, n.º 1s (10 de diciembre de 2022): 166–81. http://dx.doi.org/10.17762/ijritcc.v10i1s.5821.
Texto completoZhang, Chunhua, Wen Fang, Baopeng Zhao, Zhen Xie, Changning Hu, Hongzhuan Wen y Tao Zhong. "Study on Fault Diagnosis Method and Application of Automobile Power Supply Based on Fault Tree-Bayesian Network". Security and Communication Networks 2022 (12 de mayo de 2022): 1–10. http://dx.doi.org/10.1155/2022/4046966.
Texto completoNikanjam, Amin, Houssem Ben Braiek, Mohammad Mehdi Morovati y Foutse Khomh. "Automatic Fault Detection for Deep Learning Programs Using Graph Transformations". ACM Transactions on Software Engineering and Methodology 31, n.º 1 (31 de enero de 2022): 1–27. http://dx.doi.org/10.1145/3470006.
Texto completoJain, Rishabh y Umesh Sajjanar. "Pro-active Performance Monitoring in Optical Networks using Frequency Aware Seq2Seq Model". Indian Journal of Data Communication and Networking 3, n.º 2 (28 de febrero de 2023): 1–10. http://dx.doi.org/10.54105/ijdcn.b5028.023223.
Texto completoSingh, Seema y T. V. Rama Murthy. "Neural Network-Based Sensor Fault Accommodation in Flight Control System". Journal of Intelligent Systems 22, n.º 3 (1 de septiembre de 2013): 317–33. http://dx.doi.org/10.1515/jisys-2013-0032.
Texto completoLi, Jing, Yuxing Yang y Xiaohui Gao. "Hamiltonicity of the Torus Network Under the Conditional Fault Model". International Journal of Foundations of Computer Science 28, n.º 03 (abril de 2017): 211–27. http://dx.doi.org/10.1142/s0129054117500149.
Texto completoLiu, Bohai, Qinmu Wu, Zhiyuan Li y Xiangping Chen. "Research on Fault Diagnosis of IPMSM for Electric Vehicles Based on Multi-Level Feature Fusion SPP Network". Symmetry 13, n.º 10 (2 de octubre de 2021): 1844. http://dx.doi.org/10.3390/sym13101844.
Texto completoBian, Li y Chen Yuan Bian. "Fault Diagnosis Method for Power Network Based on Combinational Cross Entropy Algorithm". Applied Mechanics and Materials 548-549 (abril de 2014): 851–54. http://dx.doi.org/10.4028/www.scientific.net/amm.548-549.851.
Texto completoJawad, Raad Salih y Hafedh Abid. "HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method". Energies 16, n.º 3 (18 de enero de 2023): 1064. http://dx.doi.org/10.3390/en16031064.
Texto completoTariq, Rizwan, Ibrahim Alhamrouni, Ateeq Ur Rehman, Elsayed Tag Eldin, Muhammad Shafiq, Nivin A. Ghamry y Habib Hamam. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves". Energies 15, n.º 17 (5 de septiembre de 2022): 6468. http://dx.doi.org/10.3390/en15176468.
Texto completoJain, Anamika. "Artificial Neural Network-Based Fault Distance Locator for Double-Circuit Transmission Lines". Advances in Artificial Intelligence 2013 (7 de febrero de 2013): 1–12. http://dx.doi.org/10.1155/2013/271865.
Texto completoMa, Junqing, Xingxing Jiang, Baokun Han, Jinrui Wang, Zongzhen Zhang y Huaiqian Bao. "Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples". Applied Sciences 13, n.º 5 (23 de febrero de 2023): 2857. http://dx.doi.org/10.3390/app13052857.
Texto completoWei, Wang, Kang Ruiqing y Zhang Yu. "Overtemperature fault diagnosis of front bearing for main spindle based on CNN + LSTM". Journal of Physics: Conference Series 2295, n.º 1 (1 de junio de 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2295/1/012004.
Texto completoTsioumpri, Eleni, Bruce Stephen y Stephen D. J. McArthur. "Weather Related Fault Prediction in Minimally Monitored Distribution Networks". Energies 14, n.º 8 (7 de abril de 2021): 2053. http://dx.doi.org/10.3390/en14082053.
Texto completoZheng, Wei, Desheng Hu y Jing Wang. "Fault Localization Analysis Based on Deep Neural Network". Mathematical Problems in Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1820454.
Texto completoZhang, Hui, Baojun Ge y Bin Han. "Real-Time Motor Fault Diagnosis Based on TCN and Attention". Machines 10, n.º 4 (30 de marzo de 2022): 249. http://dx.doi.org/10.3390/machines10040249.
Texto completoSaidina Omar, Abdul Malek, Muhammad Khusairi Osman, Mohammad Nizam Ibrahim, Zakaria Hussain y Ahmad Farid Abidin. "Fault classification on transmission line using LSTM network". Indonesian Journal of Electrical Engineering and Computer Science 20, n.º 1 (1 de octubre de 2020): 231. http://dx.doi.org/10.11591/ijeecs.v20.i1.pp231-238.
Texto completoZhan, Zhongqiang, Dingqian Yang, Jian Wang, Jian Hao, Jie Wang y Zhijie Ge. "Transformer Fault Diagnosis Method Based on Neural Network and D-S Evidence Theory". Journal of Physics: Conference Series 2260, n.º 1 (1 de abril de 2022): 012002. http://dx.doi.org/10.1088/1742-6596/2260/1/012002.
Texto completoRahaman, Munshi Mostafijur, Prasun Ghosal y Tuhin Subhra Das. "Latency, Throughput and Power Aware Adaptive NoC Routing on Orthogonal Convex Faulty Region". Journal of Circuits, Systems and Computers 28, n.º 04 (31 de marzo de 2019): 1950055. http://dx.doi.org/10.1142/s0218126619500555.
Texto completoTrivedi, Mihir, Riya Kakkar, Rajesh Gupta, Smita Agrawal, Sudeep Tanwar, Violeta-Carolina Niculescu, Maria Simona Raboaca, Fayez Alqahtani, Aldosary Saad y Amr Tolba. "Blockchain and Deep Learning-Based Fault Detection Framework for Electric Vehicles". Mathematics 10, n.º 19 (4 de octubre de 2022): 3626. http://dx.doi.org/10.3390/math10193626.
Texto completoKhalil, Mohamed A., Arshad Ahmad, Tuan Amran T. Abdullah y Ali Al-shanini. "Failure Analysis Using Functional Model and Bayesian Network". Chemical Product and Process Modeling 11, n.º 4 (1 de diciembre de 2016): 265–72. http://dx.doi.org/10.1515/cppm-2016-0007.
Texto completoLi, He Jia, Yan Wei Cheng, Cheng Yao, Hai Feng Xu, Zhao Yao y Chang Feng Qu. "Fault Diagnosis Method of Vehicle Power System Using Bayesian Network". Applied Mechanics and Materials 556-562 (mayo de 2014): 3134–38. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.3134.
Texto completoLee, Jong-Hyun, Jae-Hyung Pack y In-Soo Lee. "Fault Diagnosis of Induction Motor Using Convolutional Neural Network". Applied Sciences 9, n.º 15 (24 de julio de 2019): 2950. http://dx.doi.org/10.3390/app9152950.
Texto completoShuai, Yang. "Research on Fault Diagnosis Technology of Industrial Robot Operation Based on Deep Belief Network". Scientific Programming 2022 (5 de julio de 2022): 1–12. http://dx.doi.org/10.1155/2022/9260992.
Texto completoShan, Xianming, Huixin Liu y Yefeng Liu. "Research on fault tolerant control system based on optimized neural network algorithm". Journal of Intelligent & Fuzzy Systems 39, n.º 6 (4 de diciembre de 2020): 9073–83. http://dx.doi.org/10.3233/jifs-189306.
Texto completoZubairi, J. A. "An Overview of Optical Network Bandwidth and Fault Management". IIUM Engineering Journal 7, n.º 1 (29 de septiembre de 2010): 47–69. http://dx.doi.org/10.31436/iiumej.v7i1.76.
Texto completoLiu, Jingjing, Chuanyang Liu, Yiquan Wu, Huajie Xu y Zuo Sun. "An Improved Method Based on Deep Learning for Insulator Fault Detection in Diverse Aerial Images". Energies 14, n.º 14 (20 de julio de 2021): 4365. http://dx.doi.org/10.3390/en14144365.
Texto completoYu, Jian Li y Zhe Zhang. "Fault Diagnosis of Transformer Based on RBF Neural Network". Applied Mechanics and Materials 571-572 (junio de 2014): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amm.571-572.201.
Texto completoLi, Ye, Xiao Liu, Zhenliang Yang, Chao Zhang, Mingchun Song, Zhaolu Zhang, Shiyong Li y Weiqiang Zhang. "Prediction Model for Geologically Complicated Fault Structure Based on Artificial Neural Network and Fuzzy Logic". Scientific Programming 2022 (10 de marzo de 2022): 1–12. http://dx.doi.org/10.1155/2022/2630953.
Texto completoWang, Xu, Hongyang Gu, Tianyang Wang, Wei Zhang, Aihua Li y Fulei Chu. "Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical fault diagnosis of bearings". Frontiers of Mechanical Engineering 16, n.º 4 (28 de octubre de 2021): 814–28. http://dx.doi.org/10.1007/s11465-021-0650-6.
Texto completo