Literatura académica sobre el tema "Nematic and Smectic phases"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nematic and Smectic phases".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Nematic and Smectic phases"

1

Urban, S., H. Kresse y R. Dąbrowski. "Low Frequency Dielectric Relaxation Process in Liquid Crystals with Nematic and Liquid-Like Smectic Phases". Zeitschrift für Naturforschung A 52, n.º 5 (1 de mayo de 1997): 403–8. http://dx.doi.org/10.1515/zna-1997-0505.

Texto completo
Resumen
Abstract Results of dielectric studies of the low frequency relaxation process in several substances exhibiting nematic -smectic C polymorphism are presented. They are compared with the data obtained re-cently for substances with nematic-smectic A and nematic-smectic B phase sequences. It was found that the rate of molecular reorientation around the short axes does not change at the transition between the nematic and a liquid-like smectic phase (Sm A, Sm C), whereas it is considerably retarded at that of the nematic-solid-like smectic (Sm B) phase. However, the activation barrier for this motion is markedly lower in the orthogonal smectics (Sm A, Sm B) than in the nematic and Sm C phases. The analysis of numerous experimental data on the activation enthalpy in the nematic phase shows that the Arrhenius equation conforms better with results than the Diogo-Martins approach, if the nematic range exceeds 10 K.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Pisipati, V. G. K. M., N. V. S. Rao, P. V. Datta Prasad y P. R. Alapati. "Density, Refractive Index and Ultrasonic Velocity Studies Involving N-(p-n-Pentyloxybenzylidene)-p-n-octylaniline". Zeitschrift für Naturforschung A 40, n.º 5 (1 de mayo de 1985): 472–75. http://dx.doi.org/10.1515/zna-1985-0509.

Texto completo
Resumen
The density, refractive index and ultrasonic velocity dependence on temperature for N-(p-npentyloxybenzylidene)- p-n-octylaniline, 50.8, is presented. The compound 50.8 exhibits smectic-B, smectic-A and nematic phases between the solid and isotropic liquid phases. The nematic-isotropic and smectic A-smectic B phase transformations are found to be first order. The interesting smectic A - nematic transformation is confirmed from the results to be second order, although the thermal expansion coefficient and reported enthalpy data had suggested a weak first order transition. The computed adiabatic compressibility, βad, molar sound velocity, Rn, and molar compressibility Aw are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nandi, B., M. Saha y Prabir K. Mukherjee. "Landau Theory of Nematic to Smectic-A Phase Transition". International Journal of Modern Physics B 12, n.º 02 (20 de enero de 1998): 207–12. http://dx.doi.org/10.1142/s0217979298000156.

Texto completo
Resumen
A phenomenological Landau-like theory is presented here, which describes the nematic and smectic-A phase. The problem of the first or second order nature of the nematic to smectic-A phase transition is explored and the stability of the different phases are also calculated. On the basis of this work it is argued that the nematic to smectic-A transition is of first order nature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bailly-Reyre, Aurélien y Hung T. Diep. "Nematic and Smectic Phases: Dynamics and Phase Transition". Symmetry 12, n.º 9 (22 de septiembre de 2020): 1574. http://dx.doi.org/10.3390/sym12091574.

Texto completo
Resumen
We study in this paper the dynamics of molecules leading to the formation of nematic and smectic phases using a mobile 6-state Potts spin model with Monte Carlo simulation. Each Potts state represents a molecular orientation. We show that, with the choice of an appropriate microscopic Hamiltonian describing the interaction between individual molecules modeled by 6-state Potts spins, we obtain the structure of the smectic phase by cooling the molecules from the isotropic phase to low temperatures: molecules are ordered in independent equidistant layers. The isotropic-smectic phase transition is found to have a first-order character. The nematic phase is also obtained with the choice of another microscopic Hamiltonian. The isotropic-nematic phase transition is a second-order one. The real-time dynamics of the molecules leading to the liquid-crystal ordering in each case is shown by a video.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jiang, Ying, Yuehua Cong y Baoyan Zhang. "Synthesis and characterization of chiral smectic side-chain liquid crystalline elastomers containing nematic and chiral mesogens". New Journal of Chemistry 40, n.º 11 (2016): 9352–60. http://dx.doi.org/10.1039/c6nj02001a.

Texto completo
Resumen
A novel series of siloxane-based chiral smectic side-chain liquid crystalline elastomers containing nematic and chiral mesogens were fabricated through synthesis involving a one-step hydrosilication reaction via a liquid crystalline crosslinking agent containing smectic and nematic phases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Workentin, Mark S., Brian J. Fahie y William J. Leigh. "Photochemical probes of conformational mobility in liquid crystals. The photochemistry of β-phenyl-4-methoxypropiophenone in the nematic and smectic B phases of CCH-n and OS-nm liquid crystals". Canadian Journal of Chemistry 69, n.º 9 (1 de septiembre de 1991): 1435–44. http://dx.doi.org/10.1139/v91-212.

Texto completo
Resumen
The photochemistry of β-phenyl-4-methoxypropiophenone (1) in the isotropic and liquid crystalline (nematic and smectic B) phases of trans, trans-4′-alkyl-(1,1′-bicyclohexyl)-4-carbonitrile (CCH-n) and trans-4-alkylcyclohexyl-trans-4′-alkylcyclohexylcarboxylate (OS-nm) mesogens has been investigated using nanosecond laser flash photolysis techniques. Solubility limits of 1 as a function of temperature in the smectic phases have been rigorously determined by 2H NMR spectroscopy, using α-, methoxy-, and β-phenyl-deuterated analogs of the ketone. Triplet decay of 1 in the smectic (Crystal B) phase of CCH-4 is multiexponential, suggesting that the ketone is solubilized in a distribution of conformations in the highly-ordered liquid crystalline lattice. The average triplet lifetime of 1 at various temperatures throughout the smectic phase is about a factor of three longer than that in homologous nematic and isotropic phases at the same temperature. The differences in the Arrhenius parameters for triplet decay in the smectic and nematic/isotropic phases are very small, however. The present results for 1 in the smectic phase of the CCH-n mesogens correct the interpretation of previously reported data obtained with higher concentration mixtures, and afford an accurate indication of the true effects of smectic B liquid crystalline order on the conformation-dependent triplet state behavior of this molecule. In OS-nm liquid crystals, triplet decay follows clean first order kinetics in all phases, but the variations in Arrhenius dependence with solvent phase are similar to those observed in the CCH-n liquid crystals. Key words: smectic, liquid crystals, 2H NMR, nanosecond laser flash photolysis, intramolecular triplet quenching, photochemistry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Subala, S. Sandy, B. Syama Sundar y S. Sreehari Sastry. "Synthesis and Characterization of Nonsymmetric Liquid Crystal Dimer Containing Biphenyl and Azobenzene Moiety". Journal of Chemistry 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/939406.

Texto completo
Resumen
Calamitic liquid crystalline dimer containing azobenzene moiety and a decyloxy biphenyl linked by flexible spacers {4-[7-(4′-decyloxy-biphenyl-4-yloxy)-alkyloxy]-phenyl}-(4-decyl-phenyl)-diazene has been synthesized and characterized by spectroscopic methods. The transition temperatures and phase behaviours were studied by Differential Scanning Calorimeter (DSC) and Polarizing Optical Microscope (POM). The synthesized compounds exhibited enantiotropic liquid crystal phase with higher spacer display nematic and smectic C phases while lower spacer shows nematic and smectic A phases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shrivastav, Gaurav P. "Self-Assembly of an Equimolar Mixture of Liquid Crystals and Magnetic Nanoparticles". Crystals 11, n.º 7 (19 de julio de 2021): 834. http://dx.doi.org/10.3390/cryst11070834.

Texto completo
Resumen
We studied the equilibrium self-assembly of an equimolar mixture of uniaxial liquid crystals (LCs) and magnetic nanoparticles (MNPs) using molecular dynamics simulations. The LCs are modeled by ellipsoids interacting via Gay–Berne potential, and MNPs are represented by dipolar soft spheres (DSS). We found that the LCs show isotropic, nematic, and smectic phases when the mixture is compressed at a fixed temperature. The DSS form chain-like structures, which remain randomly oriented at low densities where the LCs are in the isotropic phase. At intermediate and high densities, the DSS chains align along the nematic and smectic directors of LCs. We found that the DSS inside a chain follow a ferromagnetic ordering. However, the mixture does not show a significant macroscopic magnetization. The extent of nematic order in the DSS remains very similar to the LCs in intermediate densities. At high densities, the DSS have a lower extent of nematic order than the LCs. The structure of the LC–DSS mixture was further analyzed via projected pair correlation functions for distances parallel and perpendicular to directors in the nematic and smectic phases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pocock, Emily E., Richard J. Mandle y John W. Goodby. "Experimental and Computational Study of a Liquid Crystalline Dimesogen Exhibiting Nematic, Twist-Bend Nematic, Intercalated Smectic, and Soft Crystalline Mesophases". Molecules 26, n.º 3 (20 de enero de 2021): 532. http://dx.doi.org/10.3390/molecules26030532.

Texto completo
Resumen
Liquid crystalline dimers and dimesogens have attracted significant attention due to their tendency to exhibit twist-bend modulated nematic (NTB) phases. While the features that give rise to NTB phase formation are now somewhat understood, a comparable structure–property relationship governing the formation of layered (smectic) phases from the NTB phase is absent. In this present work, we find that by selecting mesogenic units with differing polarities and aspect ratios and selecting an appropriately bent central spacer we obtain a material that exhibits both NTB and intercalated smectic phases. The higher temperature smectic phase is assigned as SmCA based on its optical textures and X-ray scattering patterns. A detailed study of the lower temperature smectic ‘’X’’ phase by optical microscopy and SAXS/WAXS demonstrates this phase to be smectic, with an in-plane orthorhombic or monoclinic packing and long (>100 nm) out of plane correlation lengths. This phase, which has been observed in a handful of materials to date, is a soft-crystal phase with an anticlinic layer organisation. We suggest that mismatching the polarities, conjugation and aspect ratios of mesogenic units is a useful method for generating smectic forming dimesogens.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Oswald, Patrick, John Bechhoefer y Francisco Melo. "Pattern Formation During the Growth of Liquid Crystal Phases". MRS Bulletin 16, n.º 1 (enero de 1991): 38–45. http://dx.doi.org/10.1557/s0883769400057894.

Texto completo
Resumen
Liquid crystals, discovered just a century ago, have wide application to electrooptic displays and thermography. Their physical properties have also made them fascinating materials for more fundamental research.The name “liquid crystals” is actually a misnomer for what are more properly termed “mesophases,” that is, phases having symmetries intermediate between ordinary solids and liquids. There are three major classes of liquid crystals: nematics, smectics, and columnar mesophases. In nematics, although there is no correlation between positions of the rodlike molecules, the molecules tend to lie parallel along a common axis, labeled by a unit vector (or director) n. Smectics are more ordered. The molecules are also rodlike and are in layers. Different subtypes of smectics (labeled, for historical reasons, smectic A, smectic B,…) have layers that are more or less organized. In the smectic A phase, the layers are fluid and can glide easily over each other. In the smectic B phase, the layers have hexagonal ordering and strong interlayer corrélations. Indeed, the smectic B phase is more a highly anisotropic plastic crystal than it is a liquid crystal. Finally, columnar mesophases are obtained with disklike molecules. These molecules can stack up in columns which are themselves organized in a two-dimensional array. There is no positional correlation between molecules in one column and molecules in the other columns.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Nematic and Smectic phases"

1

Huang, Tsang-Min. "Phase Equilibria of Binary Liquid Crystal Mixtures Involving Induced Ordered Phases". University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1284381816.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Adhikari, Banani. "Study of physical properties of some liquid crystals having nematic and smectic phases". Thesis, University of North Bengal, 1995. http://hdl.handle.net/123456789/856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chakraborty, Anish. "Study of physical properties of bent core mesogens having nematic and smectic phases". Thesis, University of North Bengal, 2017. http://hdl.handle.net/123456789/2647.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Prasad, Akhileshwar. "STUDY OF THE INDUCTION OF SMECTIC Ad AND RE-ENTRANT NEMATIC PHASES IN BINARY MIXTURES OF LIQUID CRYSTALS". Thesis, University of North Bengal, 2013. http://hdl.handle.net/123456789/938.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yethiraj, Anand. "The nematic-smectic-A phase transition, a high resolution experimental study". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0024/NQ51939.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Al-Zangana, Shakhawan. "Nano- and micro-particle doped liquid crystal phases". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/nano-and-microparticle-doped-liquid-crystal-phases(31dbb051-7d9c-4780-bda0-d58773846de0).html.

Texto completo
Resumen
This thesis presents the investigation of the liquid crystal (LC) - particle suspensions. Particles from nano- to micro-size, spherical to two-dimensional shapes, with different functionality are dispersed into nematic and smectic phases. The aim is to create ordered nanoparticle (NP) assemblies and thereby modify the common properties of the liquid crystal, such as dielectric anisotropy and electro-optical, revealing any interaction between particles and LC properties. It is found that for concentrations (>0.5vol%), the ferroelectric NPs have increased the sensitivity of the nematic liquid crystal to the electric field through electro-optical responses, which is seen by an enhancement in the dielectric anisotropy. This could be induced by the coupling of the electrical dipole moments in the spherical NPs with the LC director field. The electro-optical properties of the chiral smectic (SmC*) phase (tilt angle Θ, switching time τ_s and spontaneous polarisation P_s) are found to be independent of the concentration and sizes of the doped NPs. The relaxation frequency f_R of the Goldstone mode is faster in the ferroelectric NPs suspensions of 2.0vol% compared to the paraelectric NPs. In the graphene oxide (GO) - nematic LC (5CB) suspensions, the small GO sizes of mean size 560 nm are more easily dispersible than larger flakes of 2.8 micro metre mean size. As the GO concentration is increased, each of the threshold voltage and splay elastic constant dramatically increases, reaching saturation at ≈1.0wt%. The field driven switching-on time is practically not affected, while the purely elastically driven switching-off time is strongly sped-up. Interestingly, thermotropic and lyotropic LC phases are exhibited in the GO-5CB suspensions when heating the thermotropic liquid crystal into its isotropic phase. The isotropic phase of 5CB acts as a solvent for the GO particles, forming a lyotropic nematic phase with largely reduced birefringence. It is found that the nematic to isotropic phase transition is shifted toward higher temperature for the GO-5CB system compared to the BaTiO3-5CB system. Dispersions of different sizes of GO flakes are prepared in isotropic and nematic fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature range (25-60 ℃) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes were found to exhibit varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. The relaxation frequencies in the isotropic media were lower compared to the nematic medium. Relaxation frequencies (~10 kHz) are observed in the GO-isotropic media, which are reduced as the size of the GO flakes are decreased, are anticipated to be inherited from GO flakes. However, the fast relaxations (~100 kHz) that are observed in the nematic suspensions could imply strongly slowed down molecular relaxation modes of the nematogenic molecules. Finally, the phase diagram of lyotropic LC as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity was investigated. Polarising optical microscopy was used to determine isotropic-biphasic-nematic phase evolution. The confinement volume and geometry of the sample relative to the GO size are shown to be vital to the observation of the lyotropic phase. GO LCs have the potential for a range of applications from display technologies to conductive fibres. The confinement related LC phase transition is critical toward their applications. It is also found that the stability of the LC phase is higher for the solvent of higher dielectric constant.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sigdel, Krishna P. "Phase transition studies of liquid crystal colloids with solvents and nano-solids". Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-dissertations/137.

Texto completo
Resumen
Liquid crystals (LCs) are anisotropic fluids that exhibit numerous thermodynamically stable phases in between an isotropic liquid and a three-dimensionally ordered solid. In their simplest ordered phase, the nematic, LCs show orientational order due to molecular self assembly and at the same time maintaining fluid flow properties. In the smectic phase, they show both orientational and partial translational order characterized by a 1-d density wave. Liquid crystalline substances have been extensively studied due to their applications and as important physical models of self-assembly. The effect of the disorder and impurities on LC systems is an important and challenging problem to the fundamental understanding of phases ordering or self-assembly and continually attracts the attention of researchers. The disordered systems often display complex and rich phenomena, being the generalization of the pure (ideal) systems. Disorder can dramatically alter the physical properties of multi-component, composite systems. In particular, the effect of disorder on phase transitions is important as the disorder typically couples to the order parameter, which can be usefully described as a random local field that is conjugate to the order parameter. This is usually realized in systems with random inclusions in a phase ordering media, e.g., a colloidal dispersion of solids in a complex fluid. Another form of disorder is presented by dilution effects, which imposes instead the random breaking or weakening of intermolecular bonds or interactions responsible for the phase ordering. Exploring a good physical system representing random dilution effects in a controlled manner offers a physical probe to unresolved problems in the understanding of mesophasic order. This Dissertation presents a series of studies of dilution and different form of disorder effect on liquid crystal phase transitions. We have used high-resolution AC-calorimetry, dielectric spectroscopy as well as polarizing microscopy to characterize the effects of solvent such as hexane, acetone, decane, and nanomaterials such as multiwall carbon nanotubes and ferroelectric nanoparticles on the phase transitions of several liquid crystals. The liquid crystals of interest are: pentylcyanobiphenyl (5CB), octylcyanobiphenyl (8CB), and decylcyanobiphenyl (10CB). Studies have been carried out as a function of solvent, nanotube, and nanoparticles concentration and temperature spanning the isotropic to nematic (I-N), nematic to smectic-A (N-SmA), and isotropic to smectic-A (I-SmA) phase transitions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Roshi, Aleksander. "Quenched Random Disorder Studies In Liquid Crystal + Aerosil Dispersions". Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-042705-123130/.

Texto completo
Resumen
Dissertation (Ph.D.) -- Worcester Polytechnic Institute.
Keywords: smectic-A to smectic-C; nematic to smectic-A; isotropic-nematic; phase transition; quenched random disorder; liquid crystal; gel structure; turbidity; gel dynamics; x-ray intensity fluctuation spectroscopy ( XIFS ); ac-calorimetry; x-ray diffraction Includes bibliographical references (p. 210-218).
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Millar, Helen. "Mathematical modelling of nematic and smectic liquid crystals". Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442132.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Knežević, Miloš. "Photo-induced phenomena in smectic liquids and nematic elastomers". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Nematic and Smectic phases"

1

Petrov, Minko Parvanov. Optical and electro-optical properties of liquid crystals: Nematic and smectic phases. Hauppauge, N.Y: Nova Science Publishers, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Petrov, Minko Parvanov. Optical and electro-optical properties of liquid crystals: Nematic and smecic phases. Hauppauge, N.Y: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Findon, Alison. Fréedericksz transition studies of the smectic A and smectic C liquid crystalline phases. Manchester: University of Manchester, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ostrovskii, B. X-Ray Diffraction Study of Nematic, Smectic A and C Liquid Crystals. Routledge, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Nematic and Smectic phases"

1

Safinya, C. R. y L. Y. Chiang. "The Nematic and Smectic-A1 Phases in DB7NO2: High Resolution X-Ray Study and Synthesis". En NATO ASI Series, 271–81. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0184-5_25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Benguigui, L. "Some Remarks on the Elastic Properties of the Nematic and Smectic a Phases of Liquid Crystals". En Soft Order in Physical Systems, 191–94. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2458-8_26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Jin-Hua, Franklin Lonberg, Xiaolei Ao y Robert B. Meyer. "Light Scattering Studies of a Nematic to Smectic — A Phase Transition in Rigid Rod Polymer Solutions". En Ordering in Macromolecular Systems, 171–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78893-2_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zammit, U., M. Marinelli, R. Pizzoferrato, S. Martelucci y F. Scudieri. "Photoacoustic Simultaneous Studies of Thermal Conductivity, Diffusivity and Heat Capacity Over the Smectic A-Nematic Phase Transition in Alkylcyanobiphenyls with Varying Nematic Range". En Physical Acoustics, 703–8. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_95.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Martínez-Ratón, Y., J. A. Cuesta, R. Roij y B. Mulder. "Nematic to Smectic: A “Hard” Transition". En New Approaches to Problems in Liquid State Theory, 139–50. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4564-0_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Longa, Lech. "Landau Theory of Nematic Phases". En Biaxial Nematic Liquid Crystals, 133–51. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118696316.ch5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

de Jeu, W. H. "Microscopic Aspects of the Smectic Phases". En NATO ASI Series, 29–39. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-9151-7_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

de Jeu, W. H. "Microscopic Aspects of the Nematic Phases". En NATO ASI Series, 17–27. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-9151-7_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Virga, Epifanio G. "Elasticity of Twist-Bend Nematic Phases". En Differential Geometry and Continuum Mechanics, 363–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18573-6_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Vertogen, Ger y Wim H. de Jeu. "Molecular Statistical Theory of the Smectic Phases". En Springer Series in Chemical Physics, 283–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83133-1_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Nematic and Smectic phases"

1

Martínez-Ratón, Yuri, Szabolcs Varga, Enrique Velasco, Joaquín Marro, Pedro L. Garrido y Pablo I. Hurtado. "Biaxial nematic and smectic phases of parallel particles with different cross sections". En MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082322.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Urban, Stanislaw, Eva Novotna, Horst Kresse y Roman S. Dabrowski. "Dielectric relaxation in the nematic and smectic A phases of nPCHB-NCS homologous series". En Liquid Crystals: Materials Science and Applications, editado por Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.215523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kumar, B. V. N. P., V. Satheesh, K. Venu, V. S. S. Sastry y Roman Dabrowski. "Study of nematic and smectic order fluctuations in the nematic phase through proton magnetic relaxometry". En SPIE Proceedings, editado por Jozef Zmija. SPIE, 2004. http://dx.doi.org/10.1117/12.581136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ford, Alison D., Stephen M. Morris, Mikhail N. Pivnenko y Harry J. Coles. "A comparison of photonic band edge lasing in the chiral nematic N* and smectic C* phases". En Electronic Imaging 2004, editado por Liang-Chy Chien y Ming H. Wu. SPIE, 2004. http://dx.doi.org/10.1117/12.532178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Khoo, I. C., R. R. Michael y P. Y. Yan. "Phase conjugation and pulse compression via stimulated scattering in the isotropic and mesophases of liquid crystals". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wg22.

Texto completo
Resumen
We have conducted a detailed experimental study of stimulated scatterings of nanosecond laser pulses from thin films of nematics and smectic, and isotropic cholesteric liquid crystals. We have observed for the first time simultaneous occurrence of phase conjugation (with aberration correction capability) and optical pulse compression (with compressor ratio as high as 20 or so). The origins of the nonlinear scattering process have been studied in detail with linearly and circularly polarized beams and are found to be mostly of Brillouin nature, although Raman and orientational processes also contribute in some cases. We have also studied the process involving some guided wave geometries in thin films of nematic and smectic and observed good quality phase conjugation and pulse compression even under very severe distortion at the input end of the sample. The observed thresholds for the stimulated scattering are in the kilowatts regime, and they are compared and contrasted with observations in other nonlinear materials. In most cases, the laser power thresholds are comparable to other nonlinear liquids, but it is observed that the threshold for a particular cholesteric is unusually low. Detailed analysis and experimental results are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Karn, A. J. y Y. R. Shen. "Light-induced molecular reorientation in a free-standing smectic-C film". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.we5.

Texto completo
Resumen
Large optical nonlinearities from molecular reorientation are observed in freely suspended films of tilted layered smectic-C liquid crystals. Unlike the nematic case, smectic-C molecules are restricted to reorienting about the layer normal. The light interacts with the light-induced dipole, producing an optical torque on the molecules. Within the 100-molecular layer film, a region is reoriented, producing an elastic torque which balances the optical torque. As the linear light polarization angle is changed, the optical torque varies. Thermal effects are negligible, since the intensity is fixed. Above a threshold intensity, there are two stable configurations for the same polarization angle. The reorientation is found by measuring the phase shift of the central region with a weak probe beam. A simple torque-balance model explains all the observed behavior.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mao, C. C., Kristina M. Johnson, K. Arnett, M. A. Handschy y G. Moddel. "Low power, high speed optical phase conjugation using chiral smectic optically addressed spatial light modulators". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tua4.

Texto completo
Resumen
Optical phase conjugation has many uses, including image transmission through fibers, coherent image amplification, aberration correction, pointing and tracking, and high resolution microscopy. However, its practical application has been limited by the fact that no available phase conjugating material combines fast response with high sensitivity. Using an optically addressed spatial light modulator (OASLM), which is composed of an amorphous silicon photosensor and a ferroelectric liquid crystal modulator,1 we achieved optical phase conjugation at low optical power (5 mW/cm2) and a response time (30 µs) 3 orders of magnitude faster than similar experiments reported using a nematic liquid crystal OASLM.2,3 The diffraction efficiency of our device is ~1%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Giri, S. K., N. K. Pradham, R. Paul, S. Paul, P. Mandal, Roman S. Dabrowski, M. Brodzik y Krzysztof L. Czuprynski. "Small-angle x-ray diffraction study of mixtures showing re-entrant nematic phase and induced smectic Ad phase". En Liquid Crystals, editado por Marzena Tykarska, Roman S. Dabrowski y Jerzy Zielinski. SPIE, 1998. http://dx.doi.org/10.1117/12.301273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Filippov, Alexander P. y Vjacheslav V. Suev. "Features of critical behavior of bend elastic constants of polymer liquid crystal near nematic-smectic A phase transition point". En XIII International Conference on Liquid Crystals: Chemistry, Physics, and Applications, editado por Stanislaw J. Klosowicz, Jolanta Rutkowska, Jerzy Zielinski y Jozef Zmija. SPIE, 2000. http://dx.doi.org/10.1117/12.385713.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Narumi, Takatsune, Hideaki Hoshi, Tomohiko Muraki y Tomiichi Hasegawa. "Mechanical Properties of Complex Structure Formed From Electro-Convection State of Smectic Liquid Crystal". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-14010.

Texto completo
Resumen
In the present study, electro-rheological characteristics of a liquid crystal (8CB) in smectic-A phase were investigated utilizing a parallel-plate type rheometer under a stress control mode. Solid like behaviors of the liquid crystal under DC electric fields were mainly examined. Bingham-like properties were observed and yield stresses measured were affected with the electric field conditions. When the electric field strength was low, the yield stress was almost the same as that obtained under no electric field. Above a threshold of DC electric field strength, the yield stress increased. It was clarified that the increase in the yield stress was caused with the complex structure formed in cooling process from an electro-convection state in nematic phase. Mechanical property changes after deformation of the structure were also examined as changes in dynamic viscoelasticities under condition of very small strain amplitude and the yield stress. The properties were measured before and after the deformation and compared. Moreover, the deformed structure of the liquid crystal was visualized with a polarizing microscope. Since the initial structures formed after the cooling have unevenness, the strength of the structure varied widely. When the small deformation is applied, peculiar changes in the strength were observed, i.e. the G’ measured was increased or decreased after the deformation. Moreover, the values measured after the deformation had reproducibility despite of the scattered initial data. We observed growth of typical optical patterns in the visualization of the structure and it is considered that defects like focal conic domains were generated and developed. After large deformation, the strength of the structure decreased and the deformed structure had almost no elastic properties. The structures were changed to irregular flow structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Nematic and Smectic phases"

1

Kumar, Satyendra, Quan Li, Mohan Srinivasarao, Dena M. Agra-Kooijman y Alejandro Rey. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report. Office of Scientific and Technical Information (OSTI), enero de 2017. http://dx.doi.org/10.2172/1417898.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía