Siga este enlace para ver otros tipos de publicaciones sobre el tema: Near-infrared upconversion.

Artículos de revistas sobre el tema "Near-infrared upconversion"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Near-infrared upconversion".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Baride, Aravind, Ganesh Sigdel, William M. Cross, Jon J. Kellar y P. Stanley May. "Near Infrared-to-Near Infrared Upconversion Nanocrystals for Latent Fingerprint Development". ACS Applied Nano Materials 2, n.º 7 (7 de junio de 2019): 4518–27. http://dx.doi.org/10.1021/acsanm.9b00890.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xiang, Jun, Shenglin Zhou, Jianxun Lin, Jiating Wen, Yutong Xie, Bin Yan, Qiang Yan, Yue Zhao, Feng Shi y Haojun Fan. "Low-Power Near-Infrared-Responsive Upconversion Nanovectors". ACS Applied Materials & Interfaces 13, n.º 6 (1 de febrero de 2021): 7094–101. http://dx.doi.org/10.1021/acsami.0c21115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Li, Wen, Jiasi Wang, Jinsong Ren y Xiaogang Qu. "Near-Infrared Upconversion Controls Photocaged Cell Adhesion". Journal of the American Chemical Society 136, n.º 6 (3 de febrero de 2014): 2248–51. http://dx.doi.org/10.1021/ja412364m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dou, Qing Qing, Hong Chen Guo y Enyi Ye. "Near-infrared upconversion nanoparticles for bio-applications". Materials Science and Engineering: C 45 (diciembre de 2014): 635–43. http://dx.doi.org/10.1016/j.msec.2014.03.056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Ruonan, Lifei Sun, Yangjian Cai, Yingying Ren, Hongliang Liu, Mark D. Mackenzie y Ajoy K. Kar. "Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides". Chinese Optics Letters 19, n.º 8 (2021): 081301. http://dx.doi.org/10.3788/col202119.081301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sola, Daniel, Adrián Miguel, Eduardo Arias-Egido y Jose I. Peña. "Spectroscopy and Near-Infrared to Visible Upconversion of Er3+ Ions in Aluminosilicate Glasses Manufactured with Controlled Optical Transmission". Applied Sciences 11, n.º 3 (26 de enero de 2021): 1137. http://dx.doi.org/10.3390/app11031137.

Texto completo
Resumen
In this work we report on the spectroscopic properties and the near-infrared to visible upconversion of Er3+ ions in aluminosilicate glasses manufactured by directionally solidification with the laser floating zone technique. Glasses were manufactured in a controlled oxidizing atmosphere to provide them with high optical transmission in the visible spectral range. Absorption and emission spectra, and lifetimes were assessed in both the visible and the near infrared spectral range. Green upconversion emissions of the 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions at 525 nm and 550 nm attributed to a two-photon process were observed under excitation at 800 nm. Mechanisms responsible for the upconversion luminescence were discussed in terms of excited state absorption and energy transfer upconversion processes. Excitation spectra of the upconverted emission suggest that energy transfer upconversion processes are responsible for the green upconversion luminescence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kshetri, Yuwaraj K., Bhupendra Joshi, Tae-Ho Kim y Soo W. Lee. "Visible and near-infrared upconversion in α-sialon ceramics". Journal of Materials Chemistry C 5, n.º 14 (2017): 3542–52. http://dx.doi.org/10.1039/c6tc05347e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zheng, Xiang, Ranjith Kumar Kankala, Chen-Guang Liu, Shi-Bin Wang, Ai-Zheng Chen y Yong Zhang. "Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis". Coordination Chemistry Reviews 438 (julio de 2021): 213870. http://dx.doi.org/10.1016/j.ccr.2021.213870.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wang, Zhaofeng, Yezhou Li, Qi Jiang, Huidan Zeng, Zhipeng Ci y Luyi Sun. "Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles". J. Mater. Chem. C 2, n.º 22 (2014): 4495–501. http://dx.doi.org/10.1039/c4tc00424h.

Texto completo
Resumen
Pure near-infrared to near-infrared upconversion and paramagnetism were observed in NaGd(WO4)2:Tm3+,Yb3+ nanoparticles, suggesting that they are promising materials for applications in high-contrast bio-imaging and bio-separation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chen, Xingzhong, Yang Li, Kai Huang, Ling Huang, Xiumei Tian, Huafeng Dong, Ru Kang et al. "Trap Energy Upconversion‐Like Near‐Infrared to Near‐Infrared Light Rejuvenateable Persistent Luminescence". Advanced Materials 33, n.º 15 (26 de febrero de 2021): 2008722. http://dx.doi.org/10.1002/adma.202008722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Jiayin, Hua Zhao, Xitian Zhang, Xuanzhang Wang, Hong Gao, Zhiguo Zhang y Wenwu Cao. "Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging". Journal of Physical Chemistry C 118, n.º 5 (22 de enero de 2014): 2820–25. http://dx.doi.org/10.1021/jp410993a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Savelyev, Alexander G., Vladimir A. Semchishen, Andrey V. Nechaev, Kirill V. Khaydukov, Polina A. Demina, Alla N. Generalova y Evgeny V. Khaydukov. "Near-infrared photopolymerization assisted by upconversion nanophosphors for biomedical applications". EPJ Web of Conferences 190 (2018): 04018. http://dx.doi.org/10.1051/epjconf/201819004018.

Texto completo
Resumen
We present the concept and the experimental demonstration of near-infrared photopolymerization assisted by specially designed upconversion nanophosphors. The principle of this technique is based on conversion of 980 nm laser irradiation to ultraviolet photons subsequently absorbed by photoinitiator. The nonlinearity of upconversion allows for activation of the process locally in the laser beam waist. This approach enables precise fabrication of 3D constructs directly in the volume of photocurable composition. Furthermore, the presented technique is suitable for polymerization of a wide range of photocurable resins as well as gelation of hydrogels for biomedical applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Liu, Yi, Qianqian Su, Xianmei Zou, Min Chen, Wei Feng, Yibing Shi y Fuyou Li. "Near-infrared in vivo bioimaging using a molecular upconversion probe". Chemical Communications 52, n.º 47 (2016): 7466–69. http://dx.doi.org/10.1039/c6cc03401b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Michael Dcona, M., Qing Yu, John A. Capobianco y Matthew C. T. Hartman. "Near infrared light mediated release of doxorubicin using upconversion nanoparticles". Chemical Communications 51, n.º 40 (2015): 8477–79. http://dx.doi.org/10.1039/c5cc01795e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhai, Yongbiao, Ye Zhou, Xueqing Yang, Feng Wang, Wenbin Ye, Xiaojian Zhu, Donghong She, Wei D. Lu y Su-Ting Han. "Near infrared neuromorphic computing via upconversion-mediated optogenetics". Nano Energy 67 (enero de 2020): 104262. http://dx.doi.org/10.1016/j.nanoen.2019.104262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Zou, Wenqiang, Cindy Visser, Jeremio A. Maduro, Maxim S. Pshenichnikov y Jan C. Hummelen. "Broadband dye-sensitized upconversion of near-infrared light". Nature Photonics 6, n.º 8 (15 de julio de 2012): 560–64. http://dx.doi.org/10.1038/nphoton.2012.158.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wang, Zhimin, Do Cong Thang, Qingyu Han, Xuan Zhao, Xilei Xie, Zhiyong Wang, Jun Lin y Bengang Xing. "Near-infrared photocontrolled therapeutic release via upconversion nanocomposites". Journal of Controlled Release 324 (agosto de 2020): 104–23. http://dx.doi.org/10.1016/j.jconrel.2020.05.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Shun-Wei, Chih-Chien Lee, Chih-Hsien Yuan, Wei-Cheng Su, Shao-Yu Lin, Wen-Chang Chang, Bo-Yao Huang et al. "Transparent Organic Upconversion Devices for Near-Infrared Sensing". Advanced Materials 27, n.º 7 (12 de diciembre de 2014): 1217–22. http://dx.doi.org/10.1002/adma.201404355.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lee, Gibum, Jonghwan Mun, Hyunsik Choi, Seulgi Han y Sei Kwang Hahn. "Multispectral upconversion nanoparticles for near infrared encoding of wearable devices". RSC Advances 11, n.º 36 (2021): 21897–903. http://dx.doi.org/10.1039/d1ra03572j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mahata, Manoj Kumar, Ranjit De y Kang Taek Lee. "Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications". Biomedicines 9, n.º 7 (29 de junio de 2021): 756. http://dx.doi.org/10.3390/biomedicines9070756.

Texto completo
Resumen
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Rao, Mengnan, Jie Fu, Xing Wen, Bing Sun, Jing Wu, Xuanhe Liu y Xueling Dong. "Near-infrared-excitable perovskite quantum dots via coupling with upconversion nanoparticles for dual-model anti-counterfeiting". New Journal of Chemistry 42, n.º 15 (2018): 12353–56. http://dx.doi.org/10.1039/c8nj02315h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Huang, Zhiyuan, Duane E. Simpson, Melika Mahboub, Xin Li y Ming L. Tang. "Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers". Chemical Science 7, n.º 7 (2016): 4101–4. http://dx.doi.org/10.1039/c6sc00257a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Yu, Hui, Wanlu Sun, Aliya Tiemuer, Yuanyuan Zhang, Hai-Yan Wang y Yi Liu. "Mitochondria targeted near-infrared chemodosimeter for upconversion luminescence bioimaging of hypoxia". Chemical Communications 57, n.º 42 (2021): 5207–10. http://dx.doi.org/10.1039/d1cc01338f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Chen, Xu, Wen Xu, Yandong Jiang, Gencai Pan, Donglei Zhou, Jinyang Zhu, He Wang, Cong Chen, Dongyu Li y Hongwei Song. "A novel upconversion luminescence derived photoelectrochemical immunoassay: ultrasensitive detection to alpha-fetoprotein". Nanoscale 9, n.º 42 (2017): 16357–64. http://dx.doi.org/10.1039/c7nr05577c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Meng, Xiaoyan, Huaqiao Lu, Zhiquan Li, Chen Wang, Ren Liu, Xin Guan y Yusuf Yagci. "Near-infrared light induced cationic polymerization based on upconversion and ferrocenium photochemistry". Polymer Chemistry 10, n.º 41 (2019): 5574–77. http://dx.doi.org/10.1039/c9py01262a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ding, He, Lihui Lu, Zhao Shi, Dan Wang, Lizhu Li, Xichen Li, Yuqi Ren et al. "Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources". Proceedings of the National Academy of Sciences 115, n.º 26 (11 de junio de 2018): 6632–37. http://dx.doi.org/10.1073/pnas.1802064115.

Texto completo
Resumen
Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Qiu, Shanshan, Jianfeng Zeng, Yi Hou, Lei Chen, Jianxian Ge, Ling Wen, Chunyan Liu, Youjiu Zhang, Ran Zhu y Mingyuan Gao. "Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes". Nanoscale 10, n.º 46 (2018): 21772–81. http://dx.doi.org/10.1039/c8nr05811c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ding, Binbin, Shuai Shao, Haihua Xiao, Chunqiang Sun, Xuechao Cai, Fan Jiang, Xueyan Zhao, Ping'an Ma y Jun Lin. "MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy". Nanoscale 11, n.º 31 (2019): 14654–67. http://dx.doi.org/10.1039/c9nr04858h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Wang, Fang, Zhen Li, Xiaobo Zhang, Rengan Luo, Hanlin Hou y Jianping Lei. "Transformable upconversion metal–organic frameworks for near-infrared light-programmed chemotherapy". Chemical Communications 57, n.º 63 (2021): 7826–29. http://dx.doi.org/10.1039/d1cc02670d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Pan, Er, Gongxun Bai, Jun Zhou, Lei Lei y Shiqing Xu. "Exceptional modulation of upconversion and downconversion near-infrared luminescence in Tm/Yb-codoped ferroelectric nanocomposite by nanoscale engineering". Nanoscale 11, n.º 24 (2019): 11642–48. http://dx.doi.org/10.1039/c9nr02532d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chen, Wansong, Min Chen, Qiguang Zang, Liqiang Wang, Feiying Tang, Yajing Han, Cejun Yang, Liu Deng y You-Nian Liu. "NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles". Chemical Communications 51, n.º 44 (2015): 9193–96. http://dx.doi.org/10.1039/c5cc02508g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Xia, Wanying, Bo Ling, Lun Wang, Feng Gao y Hongqi Chen. "A near-infrared upconversion luminescence total internal reflection platform for quantitative image analysis". Chemical Communications 56, n.º 60 (2020): 8440–43. http://dx.doi.org/10.1039/d0cc03119d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bartusik-Aebisher, Dorota, Mateusz Mielnik, Grzegorz Cieślar, Ewa Chodurek, Aleksandra Kawczyk-Krupka y David Aebisher. "Photon Upconversion in Small Molecules". Molecules 27, n.º 18 (10 de septiembre de 2022): 5874. http://dx.doi.org/10.3390/molecules27185874.

Texto completo
Resumen
Upconversion (UC) is a process that describes the emission of shorter-wavelength light compared to that of the excitation source. Thus, UC is also referred to as anti-Stokes emission because the excitation wavelength is longer than the emission wavelength. UC materials are used in many fields, from electronics to medicine. The objective of using UC in medical research is to synthesize upconversion nanoparticles (UCNPs) composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue. Emission occurs in the visible and UV range, and excitation mainly in the near-infrared spectrum. UC is observed for lanthanide ions due to the arrangement of their energy levels resulting from f-f electronic transitions. Organic compounds and transition metal ions are also able to form the UC process. Biocompatible UCNPs are designed to absorb infrared light and emit visible light in the UC process. Fluorescent dyes are adsorbed to UCNPs and employed in PDT to achieve deeper tissue effects upon irradiation with infrared light. Fluorescent UCNPs afford selectivity as they may be activated only by illumination of an area of diseased tissue, such as a tumor, with infrared light and are by themselves atoxic in the absence of infrared light. UCNP constructs can be monitored as to their location in the body and uptake by cancer cells, aiding in evaluation of exact doses required to treat the targeted cancer. In this paper, we review current research in UC studies and UCNP development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhu, Yuxiang, Xianlin Zheng, Yiqing Lu, Xiaoxia Yang, Amanj Kheradmand y Yijiao Jiang. "Efficient upconverting carbon nitride nanotubes for near-infrared-driven photocatalytic hydrogen production". Nanoscale 11, n.º 42 (2019): 20274–83. http://dx.doi.org/10.1039/c9nr05276c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chen, Guanying, Tymish Y. Ohulchanskyy, Rajiv Kumar, Hans Ågren y Prasas N. Prasad. "Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence". ACS Nano 4, n.º 6 (28 de mayo de 2010): 3163–68. http://dx.doi.org/10.1021/nn100457j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Idris, Niagara Muhammad, Muthu Kumara Gnanasammandhan Jayakumar, Akshaya Bansal y Yong Zhang. "Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications". Chemical Society Reviews 44, n.º 6 (2015): 1449–78. http://dx.doi.org/10.1039/c4cs00158c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zheng, Shuhong, Weibo Chen, Dezhi Tan, Jiajia Zhou, Qiangbing Guo, Wei Jiang, Cheng Xu, Xiaofeng Liu y Jianrong Qiu. "Lanthanide-doped NaGdF4 core–shell nanoparticles for non-contact self-referencing temperature sensors". Nanoscale 6, n.º 11 (2014): 5675–79. http://dx.doi.org/10.1039/c4nr00432a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Pedersen, Rasmus L., Dina Hot y Zongshan Li. "Comparison of an InSb Detector and Upconversion Detector for Infrared Polarization Spectroscopy". Applied Spectroscopy 72, n.º 5 (27 de diciembre de 2017): 793–97. http://dx.doi.org/10.1177/0003702817746635.

Texto completo
Resumen
This paper compares the signal-to-noise ratio obtained using an InSb photodiode for infrared (IR) polarization spectroscopy to that obtained using an upconversion detector, and shows a factor 64 improvement by the change. Upconversion detection is based on using sum frequency generation to move the IR optical signal to near-visible wavelengths to improve the sensitivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Liu, Ping y Wei Miu. "Hydrothermal synthesis of BaYbF5:Tm3+ nanoparticles for dual-modal upconversion near-infrared luminescence and magnetic resonance imaging". Functional Materials Letters 09, n.º 03 (junio de 2016): 1650038. http://dx.doi.org/10.1142/s1793604716500387.

Texto completo
Resumen
In this paper, we demonstrate multifunctional upconversion nanoparticles with intense near-infrared emission and unique magnetic properties for dual-modal upconversion luminescent bioimaging and T2-weighted magnetic resonance imaging. High-quality BaYbF5:Tm3+ nanoparticles are synthesized via a hydrophobic method and then converted to be hydrophilic via a hydrochloric acid treatment. The as-synthesized nanoparticles are cubic phase and about 6 nm in diameter with narrow size distribution. The intense near-infrared emission makes these nanoparticles can be acted as bio-probes in upconversion luminescent bioimaging with deep tissue penetration. Besides, these nanoparticles can also be used as T2-weighted contrast agents in magnetic resonance imaging due to the high value of relaxation rate (r2 = 4.05) in 0.55 T. This finding may have further bio-applications in the future due to the high performance of these BaYbF5:Tm3+ nanoparticles in dual-modal bioimaging.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Tripathi, Neeti, Masanori Ando, Tomoko Akai y Kenji Kamada. "Near-infrared-to-visible upconversion from 980 nm excitation band by binary solid of PbS quantum dot with directly attached emitter". Journal of Materials Chemistry C 10, n.º 12 (2022): 4563–67. http://dx.doi.org/10.1039/d1tc05058c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bian, Wenjuan, Ting Wang, Yanmei Guo, Xue Yu, Xuhui Xu y Jianbei Qiu. "Visible and near-infrared upconversion photoluminescence in lanthanide-doped KLu3F10 nanoparticles". CrystEngComm 17, n.º 38 (2015): 7332–38. http://dx.doi.org/10.1039/c5ce01040c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Amemori, Shogo, Nobuhiro Yanai y Nobuo Kimizuka. "Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm". Physical Chemistry Chemical Physics 17, n.º 35 (2015): 22557–60. http://dx.doi.org/10.1039/c5cp02733k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Bharmoria, Pankaj, Hakan Bildirir y Kasper Moth-Poulsen. "Triplet–triplet annihilation based near infrared to visible molecular photon upconversion". Chemical Society Reviews 49, n.º 18 (2020): 6529–54. http://dx.doi.org/10.1039/d0cs00257g.

Texto completo
Resumen
This review delineates the developments in triplet–triplet annihilation based NIR to Vis molecular photon upconversion including recent progress in conceptual design, applications, existing challenges, possible future directions and opportunities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wei Yanchun, 魏言春, 吴宝艳 Wu Baoyan, 杨利勇 Yang Liyong y 邢达 Xing Da. "Upconversion Fluorescence Monitoring Near-Infrared During Tumor Photothermal Therapy". Chinese Journal of Lasers 37, n.º 11 (2010): 2719–24. http://dx.doi.org/10.3788/cjl20103711.2719.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Rocheva, V. V., D. A. Khochenkov, A. N. Generalova, A. V. Nechaev, V. A. Semchishen, E. V. Stepanova, V. I. Sokolov, E. V. Khaydukov y V. Ya Panchenko. "Upconversion nanoparticles for tumor imaging with near-infrared radiation". Bulletin of the Russian Academy of Sciences: Physics 80, n.º 4 (abril de 2016): 467–70. http://dx.doi.org/10.3103/s1062873816040274.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Singh-Rachford, Tanya N., Animesh Nayak, Maria L. Muro-Small, Sèbastian Goeb, Michael J. Therien y Felix N. Castellano. "Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion". Journal of the American Chemical Society 132, n.º 40 (13 de octubre de 2010): 14203–11. http://dx.doi.org/10.1021/ja105510k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Chen, Daqin, Lei Lei, Anping Yang, Zhaoxing Wang y Yuansheng Wang. "Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals". Chemical Communications 48, n.º 47 (2012): 5898. http://dx.doi.org/10.1039/c2cc32102e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sun, Jing, Ping Zhang, Yong Fan, Jie Zhao, Shichao Niu, Lingjie Song, Li Ma, Luquan Ren y Weihua Ming. "Near-infrared triggered antibacterial nanocomposite membrane containing upconversion nanoparticles". Materials Science and Engineering: C 103 (octubre de 2019): 109797. http://dx.doi.org/10.1016/j.msec.2019.109797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Singh-Rachford, Tanya N., Animesh Nayak, Maria L. Muro-Small, Sèbastian Goeb, Michael J. Therien y Felix N. Castellano. "Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion". Journal of the American Chemical Society 133, n.º 8 (2 de marzo de 2011): 2791. http://dx.doi.org/10.1021/ja200045y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ge, Wen, Zhiang Li, Tong Chen, Min Liu y Yalin Lu. "Extended Near-Infrared Photoactivity of Bi6Fe1.9Co0.1Ti3O18 by Upconversion Nanoparticles". Nanomaterials 8, n.º 7 (16 de julio de 2018): 534. http://dx.doi.org/10.3390/nano8070534.

Texto completo
Resumen
Bi6Fe1.9Co0.1Ti3O18 (BFCTO)/NaGdF4:Yb3+, Er3+ (NGF) nanohybrids were successively synthesized by the hydrothermal process followed by anassembly method, and BFCTO-1.0/NGF nanosheets, BFCTO-1.5/NGF nanoplates and BFCTO-2.0/NGF truncated tetragonal bipyramids were obtained when 1.0, 1.5 and 2.0 M NaOH were adopted, respectively. Under the irradiation of 980 nm light, all the BFCTO samples exhibited no activity in degrading Rhodamine B (RhB). In contrast, with the loading of NGF upconversion nanoparticles, all the BFCTO/NGF samples exhibited extended near-infrared photoactivity, with BFCTO-1.5/NGF showing the best photocatalytic activity, which could be attributed to the effect of {001} and {117} crystal facets with the optimal ratio. In addition, the ferromagnetic properties of the BFCTO/NGF samples indicated their potential as novel, recyclable and efficient near-infrared (NIR) light-driven photocatalysts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía