Literatura académica sobre el tema "Navigation models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Navigation models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Navigation models"
Greenwood, Narcessa Gail-Rosales, Cynthia B. Taniguchi, Amy Sheldrick y Leslie Hurley. "Navigation models in diverse outpatient settings: Shared themes, challenges, and opportunities." Journal of Clinical Oncology 36, n.º 30_suppl (20 de octubre de 2018): 134. http://dx.doi.org/10.1200/jco.2018.36.30_suppl.134.
Texto completoCao, Caroline G. L. y Paul Milgram. "Direction and Location Are Not Sufficient for Navigating in Nonrigid Environments: An Empirical Study in Augmented Reality". Presence: Teleoperators and Virtual Environments 16, n.º 6 (1 de diciembre de 2007): 584–602. http://dx.doi.org/10.1162/pres.16.6.584.
Texto completoBodas Gallego, Alberto. "Modern Solar Navigation Techniques". Groundings Undergraduate 14 (1 de abril de 2023): 29–50. http://dx.doi.org/10.36399/groundingsug.14.143.
Texto completoNosov, P. S., I. V. Palamarchuk, S. M. Zinchenko, Ya A. Nahrybelnyi, I. S. Popovych y ,. H. V. Nosova. "Development of means for experimental identification of navigator attention in ergatic systems of maritime transport". Bulletin of the Karaganda University. "Physics" Series 97, n.º 1 (30 de marzo de 2020): 58–69. http://dx.doi.org/10.31489/2020ph1/58-69.
Texto completoLevchenko, O. "A METHOD FOR FORMALIZING THE DECISION-MAKING PROCESS FOR PREVENTING DANGEROUS SITUATIONS IN THE E-NAVIGATION SYSTEM". Shipping & Navigation 34, n.º 1 (5 de mayo de 2023): 115–26. http://dx.doi.org/10.31653/2306-5761.34.2023.115-126.
Texto completoZhou, Gengze, Yicong Hong y Qi Wu. "NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 7 (24 de marzo de 2024): 7641–49. http://dx.doi.org/10.1609/aaai.v38i7.28597.
Texto completoBerdahl, Andrew M., Albert B. Kao, Andrea Flack, Peter A. H. Westley, Edward A. Codling, Iain D. Couzin, Anthony I. Dell y Dora Biro. "Collective animal navigation and migratory culture: from theoretical models to empirical evidence". Philosophical Transactions of the Royal Society B: Biological Sciences 373, n.º 1746 (26 de marzo de 2018): 20170009. http://dx.doi.org/10.1098/rstb.2017.0009.
Texto completoPalamarchuk, I. V. "MODELING THE DIVERGENCE OF SHIPS IN THE DECISION SUPPORT SYSTEM OF THE NAVIGATOR". Scientific Bulletin Kherson State Maritime Academy 1, n.º 22 (2020): 45–53. http://dx.doi.org/10.33815/2313-4763.2020.1.22.045-053.
Texto completoFreeman, Robin y Dora Biro. "Modelling Group Navigation: Dominance and Democracy in Homing Pigeons". Journal of Navigation 62, n.º 1 (22 de diciembre de 2008): 33–40. http://dx.doi.org/10.1017/s0373463308005080.
Texto completoJindal, Honey y Neetu Sardana. "An Empirical Analysis of Web Navigation Prediction Techniques". Journal of Cases on Information Technology 19, n.º 1 (enero de 2017): 1–14. http://dx.doi.org/10.4018/jcit.2017010101.
Texto completoTesis sobre el tema "Navigation models"
Masek, Theodore. "Acoustic image models for navigation with forward-looking sonars". Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FMasek.pdf.
Texto completoThesis Advisor(s): Kolsch, Mathias. "December 2008." Description based on title screen as viewed on January 30, 2009. Includes bibliographical references (p. 51-52). Also available in print.
Sutton, R. "Fuzzy set models of the helmsman steering a ship in course-keeping and course-changing modes". Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377871.
Texto completoLlofriu, Alonso Martin I. "Multi-Scale Spatial Cognition Models and Bio-Inspired Robot Navigation". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6888.
Texto completoJulier, Simon J. "Process models for the navigation of high speed land vehicles". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362011.
Texto completoKerfs, Jeremy N. "Models for Pedestrian Trajectory Prediction and Navigation in Dynamic Environments". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1716.
Texto completoKretzschmar, Henrik [Verfasser] y Wolfram [Akademischer Betreuer] Burgard. "Learning probabilistic models for mobile robot navigation = Techniken zum maschinellen Lernen probabilistischer Modelle für die Navigation mit mobilen Robotern". Freiburg : Universität, 2014. http://d-nb.info/1123481040/34.
Texto completoReid, Zachary A. "Leveraging 3D Models for SAR-based Navigation in GPS-denied Environments". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1540419210051179.
Texto completoGoldiez, Brian. "TECHNIQUES FOR ASSESSING AND IMPROVING PERFORMANCE IN NAVIGATION AND W". Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3603.
Texto completoPh.D.
Other
Arts and Sciences
Modeling and Simulation
Yu, Chunlei. "Contribution to evidential models for perception grids : application to intelligent vehicle navigation". Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2293.
Texto completoFor intelligent vehicle applications, a perception system is a key component to characterize in real-time a model of the driving environment at the surrounding of the vehicle. When modeling the environment, obstacle information is the first feature that has to be managed since collisions can be fatal for the other road users or for the passengers on-board the considered vehicle. Characterization of occupation space is therefore crucial but not sufficient for autonomous vehicles since the control system needs to find the navigable space for safe trajectory planning. Indeed, in order to run on public roads with other users, the vehicle needs to follow the traffic rules which are, for instance, described by markings painted on the carriageway. In this work, we focus on an ego-centered grid-based approach to model the environment. The objective is to include in a unified world model obstacle information with semantic road rules. To model obstacle information, occupancy is handled by interpreting the information of different sensors into the values of the cells. To model the semantic of the navigable space, we propose to introduce the notion of lane grids which consist in integrating semantic lane information into the cells of the grid. The combination of these two levels of information gives a refined environment model. When interpreting sensor data into obstacle information, uncertainty inevitably arises from ignorance and errors. Ignorance is due to the perception of new areas and errors come from noisy measurements and imprecise pose estimation. In this research, the belief function theory is adopted to deal with uncertainties and we propose evidential models for different kind of sensors like lidars and cameras. Lane grids contain semantic lane information coming from lane marking information for instance. To this end, we propose to use a prior map which contains detailed road information including road orientation and lane markings. This information is extracted from the map by using a pose estimate provided by a localization system. In the proposed model, we integrate lane information into the grids by taking into account the uncertainty of the estimated pose. The proposed algorithms have been implemented and tested on real data acquired on public roads. We have developed algorithms in Matlab and C++ using the PACPUS software framework developed at the laboratory
Lui, Sin Ting Angela. "Enhancing stochastic mobility prediction models for robust planetary navigation on unstructured terrain". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12904.
Texto completoLibros sobre el tema "Navigation models"
Park, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. [Vicksburg, Miss: US Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Buscar texto completoPark, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. Vicksburg, MS (3909 Halls Ferry Road, Vicksburg, 39180): U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Buscar texto completoLibý, Josef. Model investigations of the improvement of navigations conditions on the lower Elbe (Labe) between Střekov anf Prostřední Žleb. Prague: Výzkumný ústav vodohospodářský T.G. Masaryka, 2002.
Buscar texto completoBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Buscar texto completoBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Buscar texto completoMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Buscar texto completoMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Buscar texto completoMyrick, Carolyn M. Navigation conditions in vicinity of Walter Bouldin Lock and Dam, Coosa River Project: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Buscar texto completoD, Mulherin Nathan, U.S. Cold Regions Research and Engineering Laboratory. y United States. Army. Corps of Engineers. Alaska District., eds. Development and results of a Northern Sea Route transit model. [Hanover, N.H.]: Dept. of the Army, Cold Regions Research and Engineering Laboratory, 1996.
Buscar texto completoShudde, Rex H. Some tactical algorithms for spherical geometry. Monterey, Calif: Naval Postgraduate School, 1986.
Buscar texto completoCapítulos de libros sobre el tema "Navigation models"
Miller, James. "Force Models". En Planetary Spacecraft Navigation, 51–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78916-3_2.
Texto completoWells, Kristen J. y Sumayah Nuhaily. "Models of Patient Navigation". En Patient Navigation, 27–40. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6979-1_2.
Texto completoAyoun, André, Jean-Pierre Gambotto y Jean-Luc Jezouin. "Geometric Models for Navigation". En Mapping and Spatial Modelling for Navigation, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84215-3_13.
Texto completoChroust, Gerhard. "Navigation in process models". En Software Process Technology, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57739-4_16.
Texto completoYan, Jinjin y Sisi Zlatanova. "Space-based Navigation Models". En Seamless 3D Navigation in Indoor and Outdoor Spaces, 45–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281146-3.
Texto completoEpstein, Susan L., Anoop Aroor, Matthew Evanusa, Elizabeth I. Sklar y Simon Parsons. "Learning Spatial Models for Navigation". En Spatial Information Theory, 403–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23374-1_19.
Texto completoAckermann, Friedrich. "Digital Terrain Models of Forest Areas by Airborne Laser Profiling". En High Precision Navigation, 239–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_17.
Texto completoMansour, Moussa y David Donaldson. "Invasive Electroanatomical Mapping and Navigation". En Cardiac Electrophysiology Methods and Models, 349–56. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6658-2_17.
Texto completoRamírez-Hernández, Luis Roberto, Julio Cesar Rodríguez-Quiñonez, Moisés J. Castro-Toscano, Daniel Hernández-Balbuena, Wendy Flores-Fuentes, Moisés Rivas-López, Lars Lindner, Danilo Cáceres-Hernández, Marina Kolendovska y Fabián N. Murrieta-Rico. "Stereoscopic Vision Systems in Machine Vision, Models, and Applications". En Machine Vision and Navigation, 241–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22587-2_8.
Texto completoYan, Lei, An Li, Wanfeng Ji y Yang Li. "Topographic Elevation Navigation and Positioning Fundamentals and Theoretical Models". En Navigation: Science and Technology, 193–230. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5524-0_6.
Texto completoActas de conferencias sobre el tema "Navigation models"
Balcı, Emirhan, Mehmet Sarıgül y Barış Ata. "Prompting Large Language Models for Aerial Navigation". En 2024 9th International Conference on Computer Science and Engineering (UBMK), 304–9. IEEE, 2024. https://doi.org/10.1109/ubmk63289.2024.10773467.
Texto completoCai, Wenzhe, Siyuan Huang, Guangran Cheng, Yuxing Long, Peng Gao, Changyin Sun y Hao Dong. "Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill". En 2024 IEEE International Conference on Robotics and Automation (ICRA), 5228–34. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610499.
Texto completoBurlet, J., T. Fraichard y O. Aycard. "Robust navigation using Markov models". En 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545091.
Texto completoAnderson, Mark. "Standard optimal pilot models". En Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3627.
Texto completoAnthes, Christoph, Paul Heinzlreiter, Gerhard Kurka y Jens Volkert. "Navigation models for a flexible, multi-mode VR navigation framework". En the 2004 ACM SIGGRAPH international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1044588.1044693.
Texto completoZhang, Yubo, Hao Tan y Mohit Bansal. "Diagnosing the Environment Bias in Vision-and-Language Navigation". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/124.
Texto completoDoman, David y Mark Anderson. "Fixed order optimal pilot models". En Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3871.
Texto completoBaras, Karolina, A. Moreira y F. Meneses. "Navigation based on symbolic space models". En 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5646810.
Texto completoCanciani, Aaron y John Raquet. "Self Building World Models for Navigation". En 2017 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.14966.
Texto completoKruse, Thibault, Alexandra Kirsch, Harmish Khambhaita y Rachid Alami. "Evaluating directional cost models in navigation". En HRI'14: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2559636.2559662.
Texto completoInformes sobre el tema "Navigation models"
Gilbert, Jennifer, Stephanie Veazie, Kevin Joines, Kara Winchell, Rose Relevo, Robin Paynter y Jeanne-Marie Guise. Patient Navigation Models for Lung Cancer. Agency for Healthcare Research and Quality (AHRQ), diciembre de 2018. http://dx.doi.org/10.23970/ahrqepcrapidlung.
Texto completoRyerson, R. A. Global navigation satellite system augmentation models environmental scan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297405.
Texto completoCronin, Thomas W. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2013. http://dx.doi.org/10.21236/ada594988.
Texto completoMarshall, Justin, Thomas Cronin y Nick Roberts. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance, Part 1. Fort Belvoir, VA: Defense Technical Information Center, junio de 2011. http://dx.doi.org/10.21236/ada547656.
Texto completoMoore, Gabriel, Anton du Toit, Susie Thompson, Jillian Hutchinson, Adira Wiryoatmodjo, Prithivi Prakash Sivaprakash y Rebecca Gordon. Effectiveness of school located nurse models. The Sax Institute, mayo de 2021. http://dx.doi.org/10.57022/gmwr5438.
Texto completoAltman, Safra, Krystyna Powell y Marin Kress. Marine bioinvasion risk : review of current ecological models. Engineer Research and Development Center (U.S.), octubre de 2023. http://dx.doi.org/10.21079/11681/47820.
Texto completoPatev, Robert C., David L. Buccini, James W. Bartek y Stuart Foltz. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada582967.
Texto completoLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed y Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), abril de 2024. http://dx.doi.org/10.21079/11681/48392.
Texto completoLemasson, Bertrand, Emily Russ y Chanda Littles. A review of habitat modeling methods that can advance our ability to estimate the ecological cobenefits of dredge material placement. Engineer Research and Development Center (U.S.), septiembre de 2024. http://dx.doi.org/10.21079/11681/49425.
Texto completoShukla, Indu, Rajeev Agrawal, Kelly Ervin y Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), noviembre de 2023. http://dx.doi.org/10.21079/11681/47850.
Texto completo