Literatura académica sobre el tema "Naturel fiber"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Naturel fiber".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Naturel fiber"

1

Parasakthibala, Ms G. y Mrs A. S. Monisha. "A Review on Natural Fibers; Its Properties and Application Over Synthetic Fibers". International Journal for Research in Applied Science and Engineering Technology 10, n.º 8 (31 de agosto de 2022): 1894–97. http://dx.doi.org/10.22214/ijraset.2022.46530.

Texto completo
Resumen
Abstract: Fibre is a long, thin strand or thread of material made by weaving or knitting threads together. Fibre is a hair like strand of material. A fibre is the smallest visible unit of any textile product. Fibres are flexible and may be spun into yarn and made into fabric. Natural fibres are taken from animals, vegetables or mineral sources. A few examples of widely used natural fibres include animal fibre such as wool and silk vegetables fibres, especially cotton and flax and asbestos, a mineral. Natural fibers are more important part in our human environment. Natural fibers are ecofriendly and inexpensive which are readily available in nature. In this chapter we discuss about the overview of natural fiber and their characteristic. this paper also deals with the impact of natural fibers over the synthetic fibers and also the application of natural fiber in various fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Darne, E. y K. Louche. "Le Lignon retrouve son cours naturel (Haute-Loire)". Techniques Sciences Méthodes, n.º 10 (octubre de 2019): 39–46. http://dx.doi.org/10.1051/tsm/201910039.

Texto completo
Resumen
L’action, conduite à Fay-sur-Lignon en Haute-Loire, a permis au Lignon de retrouver son lit d’origine et de nouvelles fonctionnalités. Situé en tête du bassin versant du Lignon du Velay, un plan d’eau avait été créé sur une ancienne zone humide en barrant la rivière. À la suite d’une destruction par une crue centennale, il a été reconstruit à la même place, mais le Lignon a été détourné de son tracé naturel. Cette mise en dérivation du Lignon a entraîné un déséquilibre morphodynamique tandis que la présence du plan d’eau générait plusieurs perturbations sur les milieux : perte d’habitats naturels, impact sur la qualité et le réchauffement de l’eau, limitation du rôle de soutien d’étiage et d’expansion de crue, perturbation de la continuité écologique. Le plan d’eau avait, par ailleurs, un attrait et un usage limité, bien que ce soit le développement touristique local qui ait motivé initialement sa création. Pour réduire ces perturbations ainsi qu’un risque de rupture d’une digue, un projet de réhabilitation du Lignon dans son lit historique a été étudié puis mis en œuvre par le Sicala de Haute-Loire (Syndicat d’aménagement de la Loire et ses affluents). Grâce à l’engagement des acteurs locaux, ce plan d’eau a pu être effacé et le Lignon a pu retrouver le cours qu’il empruntait 45 ans plus tôt à quelques ajustements près. Le projet a ainsi permis d’ouvrir un nouvel espace de liberté pour la rivière, favorable à la restauration d’une zone alluviale et de milieux associés, et à la recolonisation par les espèces emblématiques de cette tête de bassin (Salmo trutta Linneaus, 1758, Castor fiber Linnaeus, 1758). Dans un esprit de développement durable, le site réhabilité servira aussi d’espace récréatif pour l’accueil du public tout en préservant les écosystèmes et les zones refuges pour la biodiversité.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

K V, Ambareesh. "Moisture Absorption Studies of COIR and Sisal Short Fiber Reinforced Polymer Composites". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de septiembre de 2021): 116–27. http://dx.doi.org/10.22214/ijraset.2021.37928.

Texto completo
Resumen
Abstract: Easy availability of natural fibre, low cost and ease of manufacturing have urged the attention of researchers towards the possibility of reinforcement of natural fiber to improve their mechanical properties and study the extent to which they satisfy the required specifications of good reinforced polymer composite for industrial and structural applications. Polymer composites made of natural fiber is susceptible for moisture. Moisture absorption in such composites mainly because of hydrophilic nature of natural fibers. Water uptake of natural fiber reinforced composites has an effect on different. Lot of researchers prepared the natural fiber reinforced composites without conducting water absorption tests; hence it is the potential area to investigate the behavior of the composites with different moisture absorption. In this research the experimental sequence and the materials are used for the study of coir and Sisal short fiber reinforced epoxy matrix composites. The coir and Sisal short fibers are made into the short fibers with 10 mm x 10 mm x 5 mm size. The Epoxy Resin-LY556(Di glycidyl ether of bi phenol) and Hardner-HYD951 (Tetra mine), the water absorption behaviors are analyzed in the coir and Sisal short fibers reinforced epoxy composites. The water absorption behaviors of the epoxy composites reinforced with the coir and sisal short fibers with 25, 30 and 35wt% were analyzed at three different water environments, such as sea water, distilled water, and tap water for 12 days at room temperature. It was observed that the composites show the high level of the water absorption percentage at sea water immersion as compared to the other water environments. Due to the water absorption, the mechanical properties of macro particle/epoxy composites were decreased at all weight percentages. Keywords: Natural fibre, Moisture absorption, Coir and sisal short fibre, Reinforced polymer composites, Water absorption behaviour Polymer matrix composite (Epoxy resin) using Coir and sisal short fibre and to study its moisture absorption behaviour
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zaleha, M., M. Shahruddin y I. Maizlinda Izwana. "A Review on the Mechanical and Physical Properties of Natural Fiber Composites". Applied Mechanics and Materials 229-231 (noviembre de 2012): 276–81. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.276.

Texto completo
Resumen
Research on the use of natural fibers as replacement to man-made fibre in fiber reinforced composites have received more interest and opened up further industrial possibilities. Natural fibre presents many advantages compared to synthetic fibers which make them attractive as reinforcements in composite material. They come from abundant and renewable resources, which ensures a continuous fibre supply and a significant material cost saving to the plastics, automotive and packaging industries. The paper reviews the previous and current research works published in the field of natural fiber reinforced composite material with special reference in mechanical properties of the natural fiber reinforced composite.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hayette, Faid, Abadou Yacine y Ghrieb Abderrahmane. "Bio-waste influence on air lime mortar performance corrosion – optimization using the surface response method". Journal of Engineering, Design and Technology 19, n.º 5 (15 de junio de 2021): 1124–37. http://dx.doi.org/10.1108/jedt-05-2020-0174.

Texto completo
Resumen
Purpose The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical development of the material, an effort has been made to simulate the structure of the different mortar reinforced by two main layers plants. Design/methodology/approach This paper presents an experimental design of response surface methodology, a model which predicts the mechanical strength and evaluate the effectiveness of bio-waste as a corrosion inhibitor to resist the steel corrosion in air lime mortars as a function of the proportion of the constituents of a new air lime mortar based on a combination of different percentages of marble waste (MRW), air lime and deferent type, layers of natural fiber reinforcement. Luffa sponge gourd and oakum hemp fiber residues capabilities in civil engineering are evaluated by combining numerical and experimental approaches for repair mortar based on air lime and marble waste. Several electrochemical techniques, mechanical strength tests and visual inspection of steel surface were performed. Findings The results revealed good mechanical strength and corrosion protection properties of air lime mortar containing the fiber naturel. These green wastes are considered economically feasible, as well having possessing good performance efficiency in protecting rebar reinforcement. These results were confirmed via polarization curves and electrochemical impedance spectroscopy measurements. Originality/value The prepared green air lime mortar provided good corrosion protection to the rebar. The significance of this study is to encourage the usage of solid white marble waste to prepare biomass-based repair mortar with good mechanical and anti-corrosion properties on the long term is still a big challenge.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Khalid, S. N. A., Al Emran Ismail y Muhd Hafeez Zainulabidin. "A Review on Effect of Orientation Fabric on Mechanical Energy Absorption Natural Fibres Reinforced Composites". Applied Mechanics and Materials 773-774 (julio de 2015): 134–38. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.134.

Texto completo
Resumen
This paper presents the combination technique in developing the woven kenaf fiber that is used as a new method to improve energy absorption performance. This method focuses on the effect energy absorption of angle orientation. Due to the low density, natural fiber such as kenaf fiber provides comparatively good mechanical properties. Thus, natural fibers have high potential for better reinforcement in light weight structures on automotive applications. Total force, total energy, and energy absorption of natural fibre reinforced composite for different type’s natural fibre and angle orientation are discussed and reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Okfrianti, Yenni, Catur Herison, Fahrurrozi Fahrurrozi y Budiyanto Budiyanto. "The Potencial of Bamboo Shoot for Health". AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian 8, n.º 2 (8 de diciembre de 2021): 114–22. http://dx.doi.org/10.37676/agritepa.v8i2.1471.

Texto completo
Resumen
Bamboo is naturel mixture because it can survive in many habitats and belongs to the order of angiosperms monocots. There are around 1200 – 1500 species of bamboo in the world that grow in hilly areas but do not grow in alkaline, desert and rice fields. Bamboo shoots can be processed into food and even herbal and traditional medicines. Bamboo shoots are a sourece of fiber that can be used as a nutraceutical. Bamboo shoots contain as much as 2.23 – 4.20 gfiber in 100 wet weights in the form of flour, thin slices and capsules. Dendrocalamus asper bamboo shoot flour, Bambusa tuldoides and Bambusa vulgaris with air content < 10 g /100, protein, lipid and ash content< 3 g /100 g and can obtain mineral content > 60 g /100g. Bamboo shoots are a good source of dietary fiber. This review supports the increasing benefits of bamboo shoots in the supports the increasing benefit in the health world to prevent an increase in blood sugar, as antihypertention, and antihyperuresemia. Bamboo shoots can be processed into fermented products containing Lactid Acid Bacteria (BAL) which are beneficial for intestinal microflora which are recommended as probiotics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

KUMAR, SANDEEP. "A Review on Natural Fiber Reinforced Composites and its Applications." International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 1917–21. http://dx.doi.org/10.22214/ijraset.2021.37654.

Texto completo
Resumen
Abstract: Natural fibers are gaining numerous attention due to their ecofriendly nature and sustainability. The problem of global warming and environmental imbalance is being faced throughout the world which needs to be resolved. The aim of this review paper is to give a comprehensive review about the natural fiber reinforced composites and its applications. It also explains about the various surface treatments and which are applied to the natural fibers and their effects on these fibers. The properties of natural fibers vary on various factor such as fiber type, fiber size, orientation, and its structure. Being various advantages of natural fiber reinforced composites there are some disadvantages also which are high moisture absorption, lower mechanical properties and lower fire resistance which limits the applications of natural fiber reinforced composites. Keywords: Natural fibers, composite materials, properties, applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Raghu, M. J. y Govardhan Goud. "Tribological Properties of Calotropis Procera Natural Fiber Reinforced Hybrid Epoxy Composites". Applied Mechanics and Materials 895 (noviembre de 2019): 45–51. http://dx.doi.org/10.4028/www.scientific.net/amm.895.45.

Texto completo
Resumen
Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bondarev, B. A., N. N. Chernousov, R. N. Chernousov y V. A. Sturova. "EXPERIMENTAL STUDY OF THE NATURE OF INTERACTION OF STEEL FIBRES EQUIDIRECTIONALLY LOCATED IN PARALLEL TO FORCE IN FINE-GRAINED SLAG CONCRETE". Proceedings of the Southwest State University 21, n.º 2 (28 de abril de 2017): 72–82. http://dx.doi.org/10.21869/2223-1560-2017-21-2-72-82.

Texto completo
Resumen
At present, the use of modern technologies is becoming more urgent. This concerns both construction engineering and structural design standards. There is a need for a wider use of computer technology, which will allow solving multifactorial tasks taking into account actual stress-strain state of structures at all the stages of their operation with the help of a nonlinear deformation model in the future. The objective of this work is to study the nature of the interaction of steel fibers equidirectionally located in parallel to force in fine-grained slag concrete, in particular, to determine the coefficient characterizing the change in the contribution to the work of the fibre reinforcement unit depending on the length of the adjacent fibers embedment in the slag concrete and the quality of adhesion between them, and construction of a graphical model of steel fibers operation in cinderblock matrix, diagrams of deformation (state) of concrete, reinforcement and fiberы which are an integral characteristic of physical and mechanical properties of materials. Tests for the extraction of steel fibers with single offset bends at the ends of fine-grained slag concrete have been carried out. Experimental dependences of steel fibers displacement on the applied load have been obtained. Based on the results of the experimental data analysis, formulas for determining the coordinates of piecewise-linear ‘load-displacement’ diagrams are proposed; they describe the displacement of a single fiber from fine-grained slag-concrete, which allows drawing conclusions concerning their mutual influence on the anchoring ability in fine-grained slag concrete. Dependencies for determining the coefficient characterizing the change in the contribution to the work of the fibre reinforcement unit depending on the length of the adjacent fibers embedment in the slag concrete and the quality of adhesion between these fibers and the slag concrete-matrix are proposed. The work also presents common dependencies, which can be used to construct analytical piece-wise diagrams ‘load-displacement’ and describe the work of fiber embedded in fine-grained slag concrete when calculating the units of building structures from steel-fiber-slag-concrete by means of a computer using the diagram technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Naturel fiber"

1

Hariwongsanupab, Nuttapong. "Development of green natural rubber composites : Effect of nitrile rubber, fiber surface treatment and carbon black on properties of pineapple leaf fiber reinforced natural rubber composites". Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH0399/document.

Texto completo
Resumen
Les effets du caoutchouc nitrile (NBR), du traitement de la surface des fibres et du noir de carbone sur les propriétés des composites à base de caoutchouc naturel renforcé par des fibres d'ananas (NR / PALF) ont été étudiés. L'incorporation de NBR et le traitement de surface de la fibre ont été utilisés pour améliorer les propriétés mécaniques des composites à faible déformation, alors que le noir de carbone a été utilisé pour améliorer ces propriétés à forte déformation. La teneur en fibres a été fixée à 10 phr. Les matériaux composites ont été préparés à l'aide d'un mélangeur à cylindres et ont été réticulés sous presse permettant ainsi le maintien de l'orientation des fibres. Ces composites ont été caractérisés à l’aide du rhéomètre à matrice mobile (MDR), par analyse thermique mécanique dynamique (DMTA) et par tests de traction. La morphologie après fracture cryogénique a été observée à l'aide de la microscopie électronique à balayage (MEB). L'effet du NBR dont la teneur varie de 0 à 20 phr par rapport à la teneur totale en caoutchouc, a été également étudié. Le NBR est utilisé afin d’encapsuler totalement les fibres d’ananas (PALF) ; ceci conduisant à un meilleur transfert de contraintes entre la matrice et les fibres. La méthode de mélange a également été étudiée. Plusieurs types de silanes tels que le propylsilane, l'allylsilane et le silane-69 ont été utilisés pour traiter les fibres pré-nettoyées à l’aide d’un traitement alcalin. Les fibres silanisées ont été caractérisées par spectroscopie infrarouge à transformée de Fourier (FTIR), par spectroscopie de photoélectrons aux rayons X (XPS) et par MEB. Le traitement de la fibre par le silane-69 a permis d’augmenter fortement le module du matériau composite à faible déformation. Ce traitement a été plus efficace que l'incorporation de NBR dans les composites NR / PALF. Ceci peut s’expliquer par une possible réticulation chimique entre le caoutchouc et la fibre traitée au silane-69 plutôt qu’une simple interaction physique du NR, du NBR et de la fibre. Cependant, le renforcement par fibre réduit la déformation à la rupture. Par conséquent, du noir de carbone a également été incorporé dans les composites NR/NBR/PALF et NR/ PALF traitée, afin d’améliorer leurs propriétés ultimes. En incorporant du noir de carbone à un taux de 30 phr dans les deux composites, les propriétés mécaniques des composites ont été améliorées et peuvent être contrôlées à la fois à des déformations faibles et hautes
The effects of nitrile rubber (NBR), fiber surface treatment and carbon black on properties of pineapple leaf fiber-reinforced natural rubber composites (NR/PALF) were studied. The incorporation of NBR and surface treatment of fiber were used to improve the mechanical properties of composites at low deformation, whereas carbon black was used to improve these properties at high deformation. The fiber content was fixed at 10 phr. The composites were prepared using two-roll mill and were cured using compression moulding with keeping the fiber orientation. These composites were characterized using moving die rheometer (MDR), dynamic mechanical thermal analysis (DMTA) and tensile testing. The morphology after cryogenic fracture was observed using scanning electron microscopy (SEM). The effect of NBR from 0 to 20 phr of total rubber content was investigated. NBR is proposed to encase PALF leading to higher stress transfer between matrix and PALF. The method of mixing was also studied. For the fiber surface treatment, propylsilane, allylsilane and silane-69 were treated on the alkali-treated fiber. Treated fibers were characterized using Fourier-Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) and SEM. Silane-69 treatment of fiber increased the modulus at low deformation more than the incorporation of NBR of NR/PALF composites due to the chemical crosslinking between rubber and fiber from silane-69 treatment rather than the physical interaction of NR, NBR and fiber. However, reinforcement by fiber reduced the deformation at break. Hence, carbon black was also incorporated into NR/NBR/PALF and NR/surface-treated PALF composites to improve the ultimate properties. By incorporation of carbon black 30 phr in both composites, the mechanical properties of composites were improved and can be controlled at both low and high deformations
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Thomson, Cameron Ian. "Probing the Nature of Cellulosic Fibre Interfaces with Fluorescence Resonance Energy Transfer". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16277.

Texto completo
Resumen
The material properties of fibre networks and fibre reinforced composites are strongly influenced by fibre-fibre interactions. Stress transfer between load bearing elements in such materials is often dictated by the nature of the fibre-fibre interface. Inter-fibre bonding is solely responsible for internal cohesion in paper, because all stresses transferred between fibres operate through fibre-fibre bonds. . The future development of cellulosic fibre materials will require an improved understanding of the fibre-fibre interface. Fluorescence resonance energy transfer (FRET) was proposed as a new tool for the study of fibre interfaces. A protocol for covalent linkage of fluorophores to natural and regenerated cellulosic fibres was developed and the absorptive and emissive properties of these dyes were characterized. The fluorescent response of these dyed fibres in paper sheets was studied using steady-state fluorescence spectroscopy. Fluorescence micrographs of fibre crossings on glass slides were analyzed using the FRETN correction algorithm. Energy transfer from coumarin dyed fibres to fluorescein dyed fibres at the interface was observed. The FRETN surfaces for spruce and viscose rayon fibre crossings were distinctly different. The FRET microscopy method was able to detect statistically significant differences in spruce fibre interface development when fibre fraction and wet pressing were varied. The coalescence of natural cellulosic fibre interfaces during drying was also observed with the technique. Polysaccharide films were employed as model systems for the natural and regenerated cellulose fibre interfaces. It was found that pressing cellulose films did not result in significantly increased FRETN either due to resistance to deformation or the inability to participate in interdiffusion. Conversely, xylan films demonstrated a drastic increase in the FRETN signal with increased wet pressing. These results support the previously observed differences between regenerated cellulose fibres and natural wood fibres. The results of the FRETN analysis of the polysaccharide film model systems suggest that lower molecular weight amorphous carbohydrates are likely to be significant contributors to fibre interface development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Goumghar, Amirouche. "Élaboration et étude des performances dynamiques de composite bio-sourcés à architecture hybride lin—verre". Electronic Thesis or Diss., Reims, 2023. http://www.theses.fr/2023REIMS002.

Texto completo
Resumen
L'utilisation des matériaux composites renforcés par des fibres végétales ne cesse de croitre dans divers secteurs tels que l'automobile et le packaging. Toutefois, le problème de leur sensibilité à l'humidité freine encore leur utilisation dans des applications exposées à des conditions environnementales extrêmes. Par conséquent, l'hybridation des fibres végétales avec des fibres synthétiques peut constituer une voie prometteuse pour améliorer certaines propriétés des composites à renfort végétal. C'est dans ce contexte que se situe le présent travail doctoral. Il présente une analyse expérimentale du comportement en fatigue par traction--traction et en fatigue par chocs à faible énergie de stratifiés non hybrides et hybrides lin-verre/époxyde. Une investigation de leur durabilité après un vieillissement hydrique jusqu'à la saturation est également présentée. À cette fin, plusieurs plaques des composites non hybrides et hybrides lin-verre/époxyde ont été élaborées par le procédé d'infusion sous vide. Dans un premier temps, nous avons réalisé une caractérisation en traction monotone des composites de l'étude et étudié la cinétique de diffusion de l'humidité au sein de ces matériaux. Les résultats de ces essais montrent que le remplacement de couches de lin par des couches de verre améliore nettement les propriétés mécaniques stratifié lin/époxyde et diminue également sa masse d'eau absorbée à saturation. Ensuite, des essais de fatigue cyclique ont été réalisés sur des éprouvettes composites non vieillies et vieillies. Ces essais de fatigue ont été couplés à la technique de l'émission acoustique afin d'identifier les mécanismes d'endommagement et leur chronologie d'apparition. Pour évaluer l'effet de la charge de fatigue sur la perte de rigidité, les boucles d'hystérésis et le facteur d'amortissement des composites non hybrides et hybrides ont été étudiées. L'analyse des signaux acoustique permet d'identifier trois classes de signaux acoustiques dans tous les composites étudiés. Ces trois classes sont attribuées aux principaux mécanismes d'endommagement comme la fissuration matricielle, la décohésion fibre--matrice et la rupture des fibres. Cette attribution est consolidée par des observations microscopiques obtenues à l'aide d'un microscope électronique à balayage. Enfin, des essais de fatigue par chocs à faible énergie ont été réalisés sur des échantillons composites non vieillis et vieillis. Les résultats obtenus montrent clairement que le composite lin/époxyde absorbe une grande partie de l'énergie d'impact en déformation élastique. Cependant, le stratifié verre/époxyde consomme cette énergie en endommagement et rupture. De plus, le vieillissement hydrique fragilise tous les composites étudiés et diminue leur résistance à la fatigue par chocs
The use of natural fibre-reinforced composite materials is growing in various sectors such as automotive and packaging. However, the problem of their sensitivity to humidity still hinders their use in applications exposed to extreme environmental conditions. Therefore, the hybridization of natural fibres with synthetic fibres can constitute a promising way to improve some properties of natural fibre-reinforced composites. It is in this context that the present doctoral work is situated. It presents an experimental analysis of the tensile-tensile fatigue and low-energy impact fatigue behaviour of non-hybrid and hybrid flax-glass/epoxy laminates. An investigation of their durability after water aging until saturation is also presented. To this end, several plates of non-hybrid and hybrid flax-glass/epoxy composites have been fabricated by the vacuum infusion process. First, we carried out a monotonic tensile characterization of the studied composites and evaluated the kinetics of moisture diffusion within these materials. The results of these tests show that the addition of glass layers to the flax/epoxy laminate improves its mechanical properties and also reduces its mass of water absorbed at saturation. Then, cyclic fatigue tests were performed on unaged and aged composite specimens. These fatigue tests were coupled with the acoustic emission technique in order to identify the damage mechanisms and their chronology of appearance. To evaluate the effect of fatigue loading on the loss of stiffness, hysteresis loops and the damping factor of non-hybrid and hybrid composites were investigated. The analysis of the acoustic signals makes it possible to identify three classes of acoustic signals in all the studied composites. These three classes are attributed to the main damage mechanisms such as matrix cracking, fibre/matrix decohesion and fibre breakage. This attribution is supported by microscopic observations obtained using a scanning electron microscope. Finally, low-energy impact fatigue tests were performed on unaged and aged composite samples. The obtained results clearly show that the flax/epoxy composite absorbs a large part of the impact energy and transforms it into elastic energy. However, the glass/epoxy laminate consumes this energy in damage and breakage. In addition, water aging weakens all the studied composites and reduces their resistance to impact fatigue
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yang, Bing. "Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500002/.

Texto completo
Resumen
The objective of this thesis is to investigate the effects of adding natural fiber (kenaf fiber, retted kenaf fiber, and sugarcane fiber) into polymer materials. The effects are obtained by considering three main parts. 1. Performance in thermoplastic composites. The effect of fiber retting on polymer composite crystallization and mechanical performance was investigated. PHBV/PBAT in 80/20 blend ratio was modified using 5% by weight kenaf fiber. Dynamic mechanical analysis of the composites was done to investigate the glass transition and the modulus at sub-ambient and ambient temperatures. ESEM was conducted to analyze fiber topography which revealed smoother surfaces on the pectinase retted fibers. 2. Performance in thermoset composites. The effect of the incorporation of natural fibers of kenaf and of sugarcane combined with the polyester resin matrix is investigated. A comparison of mechanical properties of kenaf polyester composite, sugarcane polyester composite and pure polyester in tensile, bending, dynamic mechanical thermal analysis (DMA) and moisture test on performance is measured.. 3. Performance in sandwich composites. The comparison of the performance characteristics and mechanical properties of natural fiber composites panels with soft and rigid foam cores are evaluated. A thorough test of the mechanical behavior of composites sandwich materials in tensile, bending and DCB is presented here.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics". Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20671.

Texto completo
Resumen
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated.
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics". Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222094.

Texto completo
Resumen
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gaffiot, Lauric. "Optimisation d’un procédé d’élaboration d’un composite à base de fibres naturelles". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI056.

Texto completo
Resumen
Les matériaux composites constituent aujourd’hui un domaine très dynamique tant au niveau de l’industrie que de la recherche. Dans ce cadre, les renforts d’origines naturelles représentent une alternative intéressante aux fibres synthétiques de par leurs propriétés mécaniques élevées, leur faible densité et leur caractère biosourcé, afin de répondre à l’accroissement des niveaux de performances ciblés ainsi qu’aux exigences économiques et écologiques actuelles.Ces travaux s’inscrivent dans un projet regroupant laboratoires de recherche, fournisseurs et end-users, visant à développer un matériau composite unidirectionnel structural à base de fibre de lin pour une application sport et loisirs. Ainsi, les objectifs initiaux incluent le développement de différents traitements chimiques des fibres, afin de les laver, d’homogénéiser leurs propriétés mécaniques et d’améliorer l’adhésion fibre-matrice. Une stratégie originale a pour cela été élaborée, basée sur la réactivité et les propriétés physico-chimiques d’un agent de couplage biosourcé. Ce produit a montré un potentiel prometteur d’additif de renforcement des matériaux cellulosiques, notamment à l’état humide. De plus, sa réactivité avec des molécules compatibilisantes a permis de le fonctionnaliser pour promouvoir l’adhésion fibre-matrice.Les caractérisations menées aux différentes échelles de la fibre de lin ont ensuite montré la pertinence de ces traitements, qui renforcent les interfaces fibre-matrice et les fibres techniques à l’état humide. Les études mécaniques ont cependant soulevé de nombreuses problématiques expérimentales, et ont démontré que les spécificités morphologiques de ces objets et leur caractère naturel ne permettaient pas l’exploitation directe des mesures dans le cadre d’un tel projet de développement. Les axes de recherche se sont alors avant tout focalisés sur l’étude des matériaux composites. Ainsi, plusieurs verrous structuraux ont pu être identifiés. La qualité de l’imprégnation de ces renforts naturels, qui peut être influencée par la formulation des traitements et la mise en œuvre, est déterminante dans le développement du matériau à cause de la morphologie multi-échelles des fibres. L’orientation des fibres au sein des plis unidirectionnels s’est également avéré être un paramètre prépondérant, étroitement lié à l’architecture des renforts et aux procédés de traitements industriels.Les développements menés à la fois sur les traitements et sur la structure des composites ont ainsi permis de doubler les propriétés mécaniques des systèmes initiaux pour atteindre un module de rigidité de 30 GPa et une contrainte ultime d’environ 370 MPa en traction tout en limitant grandement la perte de résistance après vieillissement dans l’eau et en garantissant une déformation en flexion répondant au cahier des charges. Les évolutions réalisées ne permettent pas pour le moment d’envisager l’industrialisation de ce matériau, mais vont permettre le prototypage de produits finis
Nowadays, composite materials are a challenging and dynamic thematic for both industry and academic research. In this context, natural fibres are an interesting alternative to synthetic fibres thanks to their high mechanical properties, low density and biosourced origins in order to meet the requirements in terms of performance, costs and durability.This work take part into an industrial project that include research laboratories, suppliers and end-users. It aims at developing a unidirectional flax fibre composite material for sport and recreation application. The initial objectives of development focused on the surface optimization and the reinforcement, and the improvement of fibre-matrix adhesion. An original strategy has been set, based on the reactivity and the physico-chemical properties of métapériodate oxidized xyloglucan. This molecule has shown a promising effect of reinforcement on cellulosic materials, particularly in wet conditions. Besides, its reactivity with compatibilization agents allows different functionalization possibilities to increase fibre-matrix adhesion, encouraging its use as a coupling agent.The characterizations led on the different scales of flax fibre validated this strategy, as micro-mechanical tests showed adhesion improvement and mechanical properties of wet fibres had significantly increased. However, further mechanical investigations rose numerous experimental issues, and demonstrated that the specific morphology of these objects as well as their natural origins were major obstacles to measures exploitation in this kind of development project. So, the main research axis then focused on directly composite materials.Different structural problematics has been thus identified. Natural fibre impregnation, which can be influenced by treatments composition and elaboration process, has revealed itself has an important parameter linked to the multi-scale organization of flax. The fibre orientation in the unidirectional ply has been also identified as a key parameter that is affected by reinforcement architecture and industrial process of treatment.Those developments on treatments and composite structure led to a great increase of the material tensile properties to reach 30 GPa modulus and 370 MPa in strength, also improving its water ageing behaviour and its flexion ultimate strain. These promising enhancements are not sufficient in terms of overall mechanical performance and elaboration process to envisage an industrialization phase, but the prototyping of finished products will be realized
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kamenopoulou, Vassiliki. "Proprietes dosimetriques des fibres textiles : application a la dosimetrie par resonance paramagnetique electronique d'un accident d'irradiation gamma". Toulouse 3, 1987. http://www.theses.fr/1987TOU30172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kalyankar, Rahul R. "Natural fiber reinforced structural insulated panels for panelized construction". Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kalyankar.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nguyen, Minh Tuan. "Contribution à l'optimisation des processus de filature des fibres libériennes". Mulhouse, 1996. http://www.theses.fr/1996MULH0440.

Texto completo
Resumen
La régularité de masse linéique (titre) des structures textiles linéaires produites en filature constitue le critère de qualité le plus important. En se basant sur les théories stochastiques classiques de l'étirage en grappes des fibres textiles individualisées, l'auteur a proposé une modélisation originale et très générale applicable à toutes les fibres, individualisées ou agglomérées sous forme de faisceaux fibreux ; cette théorie concerne tout particulièrement les fibres libériennes telles que le jute et le lin qui se présentent toujours sous forme de «faisceaux techniques» dissociables au cours du processus de filature. Les développements théoriques ont été totalement validés par une expérimentation industrielle approfondie réalisée dans le centre d'essais N. Schlumberger, premier constructeur français de matériel de filature. Enfin, la limite de filabilité a été discutée
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Naturel fiber"

1

Sinha, Shishir y G. L. Devnani. Natural Fiber Composites. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Siengchin, Suchart. Natural fiber reinforced thermoplastics. Chemnitz: Universitätsverlag Chemnitz, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bass, Rick. Fiber. Athens: University of Georgia Press, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mohammed, Fahim, Institute of Materials, Minerals, and Mining y Woodhead publishing online, eds. Tribology of natural fiber composites. Cambridge, England: Woodhead Publishing, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

K, Mohanty Amar, Misra Manjusri y Druzal Lawrence T, eds. Natural fibers, biopolymers, and biocomposites. Boca Raton, FL: CRC Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chance, Cheryl. Natural fibers and food protein production in Texas: An economic profile. [Austin, Tex.]: Natural Fibers Research and Information Center, Bureau of Business Research, Graduate School of Business, University of Texas at Austin, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Handmade paper from naturals. New York: Lark Books, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Salmon, Margaret Belais. A professional dietitian's natural fiber diet. [S.l.]: Xlibris, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Salmon, Margaret Belais. A professional dietitian's natural fiber diet. [S.l.]: Xlibris, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Salit, Mohd Sapuan. Tropical Natural Fibre Composites. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-155-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Naturel fiber"

1

Veit, Dieter. "Other Natural Fibers". En Fibers, 403–9. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jaiswal, Deeksha y G. L. Devnani. "Extraction of Natural Fibers". En Natural Fiber Composites, 69–95. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Srivastava, Ishan, G. L. Devnani y Shishir Sinha. "Fabrication of Composites". En Natural Fiber Composites, 175–93. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tyagi, Manan, G. L. Devnani y Raj Verma. "Thermo Polymer Matrix–Based Natural Fiber Composite". En Natural Fiber Composites, 255–77. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pal, Dharam, Manash Protim Mudoi, Santosh bahadur Singh y Shishir Sinha. "Applications of Natural Fibers–Reinforced Composites (II)". En Natural Fiber Composites, 353–65. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shukla, Nidhi. "Surface Treatment of Natural Fibers (Chemical Treatment)". En Natural Fiber Composites, 123–55. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kushwaha, Ayushi. "Thermoset Polymer Matrix–Based Natural Fiber Composites". En Natural Fiber Composites, 227–54. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mishra, Kajal y Shishir Sinha. "Introduction". En Natural Fiber Composites, 1–67. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pandey, Amit, G. L. Devnani y Dhanajay Singh. "Traditional and Advanced Characterization Techniques for Reinforced Polymer Composites". En Natural Fiber Composites, 195–226. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mudoi, Manash Protim y Shishir Sinha. "Biodegradable Polymer-Based Natural Fiber Composites". En Natural Fiber Composites, 279–324. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Naturel fiber"

1

SINGHAL, ANSHUL, AMY LANGHORST, MIHAELA BANU y ALAN TAUB. "EFFECT OF ENZYMATIC RETTING CONDITIONS ON THE DIAMETER AND MECHANICAL PROPERTIES OF FLAX FIBERS". En Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36478.

Texto completo
Resumen
The current industrial method of extracting natural plant fibers, originally intended for their textile use, can degrade the inherent mechanical properties, making them difficult to replace e-glass fibers for reinforcement in polymer composites. Microorganisms during the initial dew/field retting step of fiber extraction process not only degrades the fiber-stem interphase bond constituting primarily pectin and lignin, but also degrades the structural components of the fiber such as cellulose, resulting in non-uniform technical fibers with poor mechanical properties. Also, current single fiber testing standards used for mechanical properties characterization of these fibers are suitable for assessing homogenous and uniform fiber properties correctly, which is not the case in natural fibers. In this study, the flax stems were treated with Pectinase Ultra SPL enzyme targeted to degrade the pectin bonds between the fibers and plant stem, without affecting the structural component cellulose. In this study, the size of technical fibers hand extracted from dew and enzyme retted flax are compared. The hand extracted enzyme retted stem fibers showed more uniform, finer diameters resulting in better tensile properties when compared with dew/field retted stem fibers. The improved properties are related to the diameter effect in which as the area of these fibers is reduced, the reduction of defects during the fiber extraction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mugarura, Isaac y Mehmet Çevik. "Natural Fibers in Uganda Suitable for Sustainable Natural Fiber Reinforced Composites". En 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.040.

Texto completo
Resumen
The use of natural fibers in composite polymers has grown rapidly and has gained popularity in various areas. Most of these natural fibers can also be found in Uganda. Many sectors are currently shifting to “green technologies” that are environmentally friendly in order to reduce synthetic plastic wastes and pollutions. Natural fibers are at low-cost with high specific properties and low densities. Based on these factors, most developing countries already begun using natural fibers to produce good quality products that are effective and economical. Countries like Uganda are the future source of many known and many unknown natural fibers. One of the uses of natural fiber reinforced composites is the automotive industry; Uganda is a promising country in this sense. In this study, we will review the natural fibers in Uganda suitable for natural fiber reinforced composites. These are, namely, mutuba tree (ficus natalensis), rice and coffee husk, cotton, Sansevieria trifasciata, banana fibers, sisal fibers, marsh grass and bamboo fibers. These plants are found in many other countries; however, a combined investigation is presented in our study. These fibers are mainly used in textiles, automotive industry, and lightweight items. Their future use as structural parts of low to medium strength are evaluated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

LANGHORST, AMY, ANSHUL SINGHAL, DEBORAH MIELEWSKI, MIHAELA BANU y ALAN TAUB. "NANOPARTICLE MODIFICATION OF NATURAL FIBERS FOR STRUCTURAL COMPOSITES". En Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35868.

Texto completo
Resumen
Natural fibers are a lightweight, carbon negative alternative to synthetic reinforcing agents in polymer composites. However, natural fibers typically exhibit lower mechanical performance than glass fibers due to weak interfacial adhesion between plant cells in the fiber and damage to the fibers during extraction from a plant stem. However, improvement of natural fiber mechanical performance could enable their wide-scale incorporation in structural composite applications, significantly reducing composite weight and carbon footprint. This study seeks to develop a novel, cost-effective method to significantly improve natural fiber stiffness via repair of damage caused by extraction and/ or stiffening of the weak cellular interfaces within a natural fiber. Supercritical fluids have been shown to be capable of swelling and plasticizing amorphous polymers, increasing additive absorption. In this work. supercritical-carbon dioxide (scCO2) was used as a solvent to assist with infusion of nanoparticles into flax fibers at pressures ranging from 1200-4000psi. Fiber analysis with Plasma Focused Ion Beam-Scanning Electron Microscopy (PFIB-SEM) showed that nanoparticles were capable of penetrating and bridging openings between cells, suggesting the ability for nanoparticle treatment to assist with crack repair. Additionally, treated fibers contained uniform surface coatings of nanoparticles, potentially reducing fiber porosity and modifying interfacial properties when embedded in a polymer matrix. Overall, this method of nanoparticle reinforcement of natural fibers could enable development of high-performance lightweight, low-carbon footprint composites for transportation or industrial applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jayamanne, B. C. D. y Sanathanan Velauthapillai. "Using Coconut Fibre To Improve The Tensile Characteristics Of Concrete". En SLIIT 2nd International Conference on Engineering and Technology. SLIIT, 2023. http://dx.doi.org/10.54389/yvzt5486.

Texto completo
Resumen
Even though the building industry is modernizing in terms of technology and materials used, construction costs have risen, as has the environmental impact. The behavior of coconut fiber in a concrete structure is described in this paper. Coconut fiber increases a range of technical qualities in concrete. Sustainability is a generally accepted concept in today's construction industry. Coconut fibers have the highest tenacity of any natural fiber. They can be used for reinforcement in low-cost, basic concrete structures. The experiment will be conducted out on concrete with fibre inclusion in four different mix proportions (0%, 2%, 4%, and 6% by weight of the cement). This experiment will assess the compressive strength and split tensile strength of coconut fiber-reinforced concrete after 7 and 28 days. This test is sufficient for M20 and M30 grade concrete. According to this study, CFRC with a fiber fraction of 2% had the best Split Tensile Strength. Additionally, adding coconut fibers reduces the compressive strength of concrete. KEYWORDS: CFRC, Coconut Fibre, Compressive Strength, Split Tensile Strength
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kooshki, Pantea y Tsz-Ho Kwok. "Review of Natural Fiber Reinforced Elastomer Composites". En ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86042.

Texto completo
Resumen
This paper is a review on mechanical characteristics of natural fibers reinforced elastomers (both thermoplastics and thermosets). Increasing environmental concerns and reduction of petroleum resources attracts researchers attention to new green eco-friendly materials. To solve these environmental related issues, cellulosic fibers are used as reinforcement in composite materials. These days natural fibers are at the center of attention as a replacement for synthetic fibers like glass, carbon, and aramid fibers due to their low cost, satisfactory mechanical properties, high specific strength, renewable resources usage and biodegradability. The hydrophilic property of natural fibers decreases their compatibility with the elastomeric matrix during composite fabrication leading to the poor fiber-matrix adhesion. This causes low mechanical properties which is one of the disadvantages of green composites. Many researches have been done modifying fiber surface to enhance interfacial adhesion between filler particles and elastomeric matrix, as well as their dispersion in the matrix, which can significantly affect mechanical properties of the composites. Different chemical and physical treatments are applied to improve fiber/matrix interlocking.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ghanwat, Vikas, Jivan Mule, Saurabh Telore, Vijay Bhosale y Sudarshan Patale. "Mechanical Behavior of Natural Fiber Composite Material". En National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.23.

Texto completo
Resumen
The use of natural fibers as reinforcement in polymeric composites is increasing thanks to the improvements in properties that fibers can provide to the merchandise. Composites materials were prepared by compression molding technique with hand layup process. Treatment of fiber with 2% NaOH was carried out in order to improve the interfacial bonds between fiber and matrix leading to better mechanical properties of the spathe-fiber-reinforced composite laminates. Filler loading as 5% by volume of coir fiber or epoxy resin composites have been formulated. The fiber length was chosen as 5mm, 10mm & 15mm and the ratio of epoxy resin: hardener was maintained as 10:0.8. A total three plates with dimension as 300 mm х 300 mm х 4 mm were produced and specimens as per the varied ASTM standard were tested to determine the ultimate tensile strength, strain energy, flexural strength, strain energy and micro hardness value for different configuration. It was observed that the lastingness of epoxy resin/ coir fiber composites was maximum at 15mm fiber length (16.27 N/mm2). The charpy notch impact strength was also maximum at 15mm fiber length (10.87 kJ/m2). The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xue, Yibin, Scott A. Fletcher y Kunpeng Wang. "Micromechanical Simulations on Waving and Kinked Natural Fiber-Reinforced Plastic Composites". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67462.

Texto completo
Resumen
Micromechanics-based simulations were conducted to evaluate the linear and nonlinear properties of natural fiber-reinforced plastic composites with fibers in various waving and kinked forms. Natural fibers, such as woodfibers and fibers from plants, have length-aspect ratio of longitudinal and transverse at or greater than 20. At such high aspect ratio, the natural fiber normally presents in waving, bending, twisting, kinking morphology in the composites. This paper presents a series of micromechanical simulations to predict the elastic and nonlinear elastic behaviors of natural fiber-reinforced plastic composites (NF-PCs) considering the effects of fiber kinking, waving, and arrangements on the stress-strain relationship. A set of three-dimensional unit cells (UC) were developed to mimic various fiber morphologies with the fiber volume fraction of fifty percent, a typical fiber volume fraction for the natural fiber plastic composites. Periodic displacement boundary conditions were implemented on the UC to simulate a unidirectional strain field. The homogenized anisotropic stress-strain relations for NF-PCs were predicted by postulating nonlinear behavior of plastic matrix and perfect and imperfect interface between the NF and the matrix. Stress distributions in the natural fiber were presented as a function of the fiber aspect ratio and the fiber waving and kinking forms. Even though, the high fiber aspect ratio provides relatively high elastic modulus and nonlinear hardening, it also induces high stresses or stress concentration in the fiber that may result in earlier failure of the fiber when the composites undergone a relatively large deformations (&gt; 4%).
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kong, Xujie, Ying Yu, Yuqiu Yang, Jungang Li, Mengyuan Liao y Manabu Nomura. "Mechanical Property and Degradation in Hot Water of Injection Molded Glass Short Fiber/Wood Powder/Polypropylene Hybrid Composites". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64475.

Texto completo
Resumen
As well known, natural fibers absorb water easily that will affect the mechanical property considerably and there exists a problem of incompatibility which leads the weak interfacial adhesion between the fiber and the resin matrix because of the hygroscopic nature of natural fibers. Therefore, conducting hot water immersion and tensile test is necessary to study the mechanical property and degradation. In this study, glass fiber/wood powder/pp. hybrid composites were prepared by injection molding process at a fixed reinforcement to matrix ratio of 51:49. 3 kinds of hybrid specimens with glass fiber/wood powder ratios of 51:0, 21:30, and 0:51 were fabricated. The hydrothermal aging performance was investigated during the 80°C hot water immersion experiment with a series of immersion time and the effect of hot water immersion on the mechanical properties of composites have been evaluated based on the tensile test. Results showed that both the strength and modulus of hybrid composite decrease obviously as the immersion time increase, which can be considered that the hydroscopic property of natural fiber would decrease the durability of composite in humidity environment. And the skin-core structure comes from injection molded process contributes to the better hydrothermal aging property of Glass/PP composite.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Malkapuram, devaiah. "Thermal Properties of Hybrid Natural Fiber Reinforced Polymer Matrix Composites with SiC as Filler". En International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0460.

Texto completo
Resumen
<div class="section abstract"><div class="htmlview paragraph">Scientists and technologists attracted towards natural fibers like banana, cotton, coir, sisal, hemp and jute for the application civil structures and consumer goods. It was identified the electrical resistance, thermal and acoustic insulating properties for possessing of these natural fibers in composites. Natural fibers have many benefits compared to artificial fibers, as an example less density, less weight; low cost, specific properties and they are recyclable and biodegradable. There aren’t any skin effects because of high strength and stiffness, renewable. In alternative manner, there also are some limitations, as an example less thermal stability and wetness uptake. several of them studied a major improvement in properties of hybrid composites with reinforced with glass fiber in resin content however it’s naturally hazard with usage of this glass fiber content. There are many publications on review of fiber reinforced composites, a notable research has been done on natural fiber polymer composites but research on jute, hemp, hybrid of jute fiber and hemp fiber, hybrid (jute/hemp) fiber with SiC particulates as filler at specific extent fractions primarily.</div><div class="htmlview paragraph">In this paper, hybrid (hemp and jute) fiber reinforced epoxy matrix composites were fabricated by using hand lay-up technique of different weight percentage of hybrid fiber and SiC particulates as filler have been studied and their thermal properties such as density, Thermal gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) by which we can know thermal stability of the composites.</div></div>
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

ASEER, J. RONALD, Renold Elsen y MOHAMMED RILWAN. "Finite Element Modeling of Elastic Properties of Flax Fiber Reinforced Epoxy Composites". En International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0489.

Texto completo
Resumen
<div class="section abstract"><div class="htmlview paragraph">Natural fibers are extracted from plant can be used as a fiber reinforcement in polymer based materials which provides anisotropic mechanical properties due to their interior microstructure. In our county, flax fiber is available in nature abundantly which is widely used for manufacturing of composites for automotive and aerospace application. In these work, young modulus of fiber composites is determined by using mathematical models. Finite element model is used to determine the modulus properties of flax fiber epoxy composites by varying fiber ratio. The analysis results indicated that finite element model results are correlated with mathematical of flax fiber reinforced epoxy composites.</div></div>
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Naturel fiber"

1

Westman, Matthew P., Leonard S. Fifield, Kevin L. Simmons, Sachin Laddha y Tyler A. Kafentzis. Natural Fiber Composites: A Review. Office of Scientific and Technical Information (OSTI), marzo de 2010. http://dx.doi.org/10.2172/989448.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Taylor. L51724 Fiber Optic Pressure Sensor Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 1995. http://dx.doi.org/10.55274/r0010368.

Texto completo
Resumen
Fiber optic sensors have been under development in industrial and government laboratories around the world for over a decade The commercial market for fiber sensors for measuring parameters such as temperature, displacement, and liquid level is now estimated to exceed $50 M/year Aside from the commercial interest, the U S. Department of Defense has vigorously pursued the development of fiber gyroscopes and hydrophones In spite of the high level of research and devleopment activity, however, fiber sensors were not successfully applied in the relatively harsh environment of engine combustion chambers prior to 1991. The goal of this development is to demonstrate the utilization of a new fiber optic sensor technology in engines used for natural gas transmission. Presently, there is no way to continuously measure pressure in these engines over extended periods of operation. Reliable fiber optic sensor networks supplying data to computerized control systems for on-line engine balancing could lead to major reductions in the emission of NO, and other harmful combustion products. Fuel economies in the millions of dollars per year for companies in the natural gas transmission industry could also be realized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Taylor. NR199202 Fiber Optic Fabry-Perot Sensors for Combustion Chamber Monitor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), septiembre de 1992. http://dx.doi.org/10.55274/r0011145.

Texto completo
Resumen
Presently, there is no way to continuously measure pressure and temperature in engines over extended periods of operation. Reliable fiber optic sensor networks supplying data to computerized engine control systems could lead to fuel economies in the millions of dollars per year. The goal of this project is to demonstrate the utilization of a new fiber optic sensor technology in engines used for the pumping of natural gas.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rocky, AMK Bahrum Prang y Amanda J. Thompson. Production of Ecofriendly Natural Bamboo Bast Fiber and Assessment of Antibacterial Activity. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-277.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tanaka, Eri, Regina Schwerd, Wolfgang Hofbauer y Daniel Zirkelbach. Laboratory tests on decay of natural fibre insulation materials suggest a more differentiated evaluation and higher RH thresholds. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541651346.

Texto completo
Resumen
To reduce CO2 emissions and save grey energy, natural materials like wood and wooden materials are becoming more and more important. However, these products are particularly sensitive to moisture, as they can be attacked by mould or decay fungi. In contrast to mould growth, which typically is associated with visual impairment and health problems, the growth of decay fungi may result in structural defects which clearly must be excluded. Up to now it is mostly assumed that wooden materials are more sensitive to such attack than solid wood. Therefore, different wood fibre insulation materials were inoculated with decay fungi and exposed to different climates to determine the requirements for the decay process and to compare them with the requirements of decay by the same fungi of solid wood. The results prove that some natural fibre materials are equally or even more resistant to decay fungi than solid wood, while others are less. The resistant products can therefore be assessed like solid wood – for which already temperature dependent thresholds and in part also transient decay prediction models are available. Maybe even specific higher moisture levels can be acceptable. However, the results also suggest a differentiated view on natural fibre insulations, as they have a very different susceptibility to wood decay. Uniform and significantly lower limits than for solid wood are not justified.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Powell, McKenna J., Kenneth J. Prusa, Joseph G. Sebranek y Rodrigo Tarte. Evaluation of Citrus Fiber as a Natural Alternative to Sodium Tripolyphosphate in Alternatively-cured Pork Bologna. Ames (Iowa): Iowa State University, enero de 2018. http://dx.doi.org/10.31274/ans_air-180814-327.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Iyer, Ananth V., Samuel Labi, Steven Dunlop, Thomas Brady Jr. y Eki Amijaya. Cost and Benefit Analysis of Installing Fiber Optics on INDOT Projects. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317131.

Texto completo
Resumen
The Indiana Department of Transportation (INDOT) is tasked with the stewardship of billions of dollars’ worth of public invested highway infrastructure. Not only does INDOT continually seek design and operational policies that foster cost effective project delivery and procurement, they also seek opportunities for revenue generation. Due to population growth and the increased demand for online connectivity and global information transmission, the fiber-optic cable industry has experienced rapid growth over the past few years. Information and communication technology (ICT) companies have long sought to achieve higher economic productivity by installing fiber-optic cables in the right of way (ROW) of access-controlled highways. Based on these developments, an experiment was conducted to measure the economic impact in Indiana. To determine this impact, a database was developed by compartmentalizing the analysis into (1) GDP per county per industry type, (2) the natural growth of GDP as a factor, and (3) the extent of contribution of broadband in the growth of GDP. A general formula was developed to incorporate the adjusted median income on both the industry and county levels, along with a broadband contribution factor. This formula was employed to determine policies that can produce optimum economic outcome by leveraging the Pareto method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lewis, Randolph. X-ray Diffraction and Neutron Scattering Analysis of Natural and Synthetic Spider Silk Fibers. Office of Scientific and Technical Information (OSTI), noviembre de 2013. http://dx.doi.org/10.2172/1104739.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Beckman, Ivan. Development of alternative air filtration materials and methods of analysis. Engineer Research and Development Center (U.S.), junio de 2023. http://dx.doi.org/10.21079/11681/47188.

Texto completo
Resumen
Development of high efficiency particulate air (HEPA) filters demonstrate an effort to mitigate dangerous aerosol hazards at the point of production. The nuclear power industry installs HEPA filters as a final line of containment of hazardous particles. An exploration of analytical, experimental, computational, and machine learning models is presented in this dissertation to advance the science of air filtration technology. This dissertation studies, develops, and analyzes alternative air filtration materials and methods of analysis that optimize filtration efficiency and reduce resistance to air flow. Alternative nonwoven filter materials are considered for use in HEPA filtration. A detailed review of natural and synthetic fibers is presented to compare mechanical, thermal, and chemical properties of fibers to desirable characteristics for air filtration media. Digital replication of air filtration media enables coordination among experimental, analytical, machine learning, and computational air filtration models. The value of using synthetic data to train and evaluate computational and machine learning models is demonstrated through prediction of air filtration performance, and comparison to analytical results. This dissertation concludes with discussion on potential opportunities and future work needed in the continued effort to advance clean air technologies for the mitigation of a global health and safety challenge.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Poelina, Anne, J. Alexander, N. Samnakay y I. Perdrisat. A Conservation and Management Plan for the National Heritage Listed Fitzroy River Catchment Estate (No. 1). Editado por A. Hayes y K. S. Taylor. Martuwarra Fitzroy River Council; Nulungu Research Institute, The University of Notre Dame Australia., 2020. http://dx.doi.org/10.32613/nrp/2020.4.

Texto completo
Resumen
The Martuwarra Fitzroy River Council (Martuwarra Council) has prepared this document to engage widely and to articulate its ambitions and obligations to First Law, customary law and their guardianship authority and fiduciary duty to protect the Martuwarra’s natural and cultural heritage. This document outlines a strategic approach to Heritage Conservation and Management Planning, communicating to a wide audience, the planning principles, key initiatives, and aspirations of the Martuwarra Traditional Owners to protect their culture, identity and deep connection to living waters and land. Finer granularity of action items required to give effect to this Conservation and Management Plan for the National Heritage Listed Fitzroy River Catchment Estate are outlined in section 7 and which will be more fully explored by the Martuwarra Council in the coming months and years.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía