Literatura académica sobre el tema "Nanostructured hybrid material"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanostructured hybrid material".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nanostructured hybrid material"
Koufos, Evan y Meenakshi Dutt. "Designing Nanostructured Hybrid Inorganic-biological Materials via the Self-assembly". MRS Proceedings 1569 (2013): 51–56. http://dx.doi.org/10.1557/opl.2013.764.
Texto completoAversa, Raffaella, Roberto Sorrentino y Antonio Apicella. "New Biomimetic Hybrid Nanocomposites for early Fixation Prostheses". Advanced Materials Research 1088 (febrero de 2015): 487–94. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.487.
Texto completoKatayama, Mitsuhiro, Shin-ichi Honda, Takashi Ikuno, Kuei-Yi Lee, Masaru Kishida, Yuya Murata y Kenjiro Oura. "Synthesis of Nanostructured Hybrid between Carbon Nanotube and Inorganic Material towards Nanodevice Application". e-Journal of Surface Science and Nanotechnology 2 (2004): 244–55. http://dx.doi.org/10.1380/ejssnt.2004.244.
Texto completoZhu, Shaoli y Wei Zhou. "Topical Review: Design, Fabrication, and Applications of Hybrid Nanostructured Array". Journal of Nanomaterials 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/206069.
Texto completoMahmood, Khalid, Bhabani S. Swain, Ahmad R. Kirmani y Aram Amassian. "Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2core–shell electron transporting material". Journal of Materials Chemistry A 3, n.º 17 (2015): 9051–57. http://dx.doi.org/10.1039/c4ta04883k.
Texto completoBui, Hoa, Nguyen Duc Lam, Bui Xuan Khuyen, Bui Son Tung, Man Hoai Nam, Nguyen Thi Ngoc Anh, Do Chi Linh, Duong Thi Huong y Pham Thi San. "Synthesis and characterization of in-situ MoS2-graphene hybrid nanostructured material". Journal of Military Science and Technology, n.º 81 (26 de agosto de 2022): 122–27. http://dx.doi.org/10.54939/1859-1043.j.mst.81.2022.122-127.
Texto completoPiticescu, Roxana M., Gabrielle Charlotte Chitanu, Aurelia Meghea, Maria Giurginca, Gabriela Negroiu y Laura Madalina Popescu. "Comparative Study of In Situ Interactions between Maleic Anhydride Based Copolymers with Hydroxyl Apatite". Key Engineering Materials 361-363 (noviembre de 2007): 387–90. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.387.
Texto completoLyuksyutov, I. F. y D. G. Naugle. "Magnet/Superconductor Nanostructures". International Journal of Modern Physics B 17, n.º 18n20 (10 de agosto de 2003): 3441–44. http://dx.doi.org/10.1142/s0217979203021162.
Texto completoWang, Hualan, Qingli Hao, Xujie Yang, Lude Lu y Xin Wang. "A nanostructured graphene/polyaniline hybrid material for supercapacitors". Nanoscale 2, n.º 10 (2010): 2164. http://dx.doi.org/10.1039/c0nr00224k.
Texto completoMcDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti y Vladimir Svrcek. "Nanostructured Perovskite Solar Cells". Nanomaterials 9, n.º 10 (18 de octubre de 2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Texto completoTesis sobre el tema "Nanostructured hybrid material"
BERETTA, MARIO. "Nanostructured mesoporous materials obtained by template synthesis and controlled shape replica". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7502.
Texto completoWeißhuhn, J., T. Mark, M. Martin, P. Müller, A. Seifert y S. Spange. "Ternary organic–inorganic nanostructured hybrid materials by simultaneous twin polymerization". Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-220068.
Texto completoDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Göring, M., A. Seifert, K. Schreiter, P. Müller y S. Spange. "A non-aqueous procedure to synthesize amino group bearing nanostructured organic–inorganic hybrid materials". Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-152006.
Texto completoDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Renard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Texto completoClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
Möllmann, Alexander [Verfasser]. "Nanostructured Metal Oxide Thin Films as Electron Transport Material for Inorganic-Organic Hybrid Perovskite Solar Cells / Alexander Möllmann". München : Verlag Dr. Hut, 2020. http://d-nb.info/1219478067/34.
Texto completoKim, Wun-Gwi. "Nanoporous layered oxide materials and membranes for gas separations". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47591.
Texto completoChang, Sehoon. "Organic/inorganic hybrid nanostructures for chemical plasmonic sensors". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39545.
Texto completoDalmases, Solé Mariona. "Design of novel compositionally controlled hybrid and ternary nanostructures". Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/666576.
Texto completoEn els últims anys, els materials ternaris i híbrids han començat a sorgir gràcies al gran ventall de composicions i, per tant, de propietats que ofereixen i que els donen la possibilitat d’aplicar-se en diversos camps, com ara l’emmagatzematge d’energia, l’optoelectrònica o la biomedicina. Aquesta tesis està centrada en el disseny de noves nanoestructures ternàries i híbrides basades en materials amb una toxicitat baixa. En primer lloc, s’ha descrit un procediment simple a temperatura ambient per la síntesi de nanoestructures ternàries i híbrides d’Ag-Au-Se i d’Ag-Au-S que consisteix en la reacció entre nanopartícules d’Ag2Se i Ag2S sintetitzades prèviament i un precursor d’Au(III). El temps de reacció, la concentració del precursor d’or, la naturalesa del tensioactiu i la relació Ag:Au són els quatre paràmetres clau que permeten el control del producte final. Addicionalment, dos compostos del sistema Ag-Au-Se van ser caracteritzats termoelèctricament i com a agents de contrast en tomografia computada. En segon lloc, s’ha estudiat un altre sistema ternari, format per Ag-Cu-S. El mètode d’injecció en calent proposat en aquesta tesi permet la formació del material amb estequiometria AgCuS. El material va ser caracteritzat termoelèctricament, tot i que no mostra resultats satisfactoris degut a la seva baixa conductivitat elèctrica. En tercer lloc, es presenten quatre nanoestructures noves basades en Cu, Pt i Se, sintetitzades mitjançant una reacció a alta temperatura entre NPs de Cu2-xSe sintetitzades prèviament i un precursor de Pt(II). L’impacte de la relació Pt:Cu utilitzada en la síntesi en el producte final va ser estudiada. A mesura que la quantitat de platí augmenta en l’estructura, aquest es va introduint més eficientment en la xarxa cristal·lina del semiconductor de coure i seleni, expulsant gradual i lentament el seleni fins a la totalitat, augmentant així el caràcter metàl·lic de les nanoestructures finals. Finalment, es descriuen uns compostos híbrids hidrofílics, formats a partir de NPs inorgàniques (Au, Ag, Ag3AuSe2 i Au@Fe3O4) i un complex d’Au(I) de baix pes molecular i altament fluorescent. El seu acoblament està basat, essencialment, en interaccions aurofíliques/metal·lofíques entre els àtoms de la superfície de la nanopartícula i els àtoms d’Au(I) del complex.
Guo, Yi Wei Yen. "Electroactive nanostructured polymers and organic-inorganic hybrid materials /". Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1861.
Texto completoGupta, Maneesh Kumar. "Stimuli-responsive hybrid nanomaterials: spatial and temporal control of multifunctional properties". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45920.
Texto completoLibros sobre el tema "Nanostructured hybrid material"
Hybrid nanomaterials: Synthesis, characterization, and applications. Hoboken, N.J: Wiley, 2011.
Buscar texto completoLi, Quan, ed. Functional Organic and Hybrid Nanostructured Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.
Texto completo1934-, Mark James E., Lee C. Y.-C. 1947-, Biancini P. A. 1957- y American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Hybrid organic-inorganic composites. Washington, D.C: American Chemical Society, 1995.
Buscar texto completoPedro, Gómez-Romero y Sanchez Clément, eds. Functional hybrid materials. Weinheim: Wiley-VCH, 2004.
Buscar texto completoJ, Brunner Simon y Egger Julian W, eds. Research in hybrid materials. New York: Nova Science Publishers, Inc., 2008.
Buscar texto completoGuido, Kickelbick, ed. Hybrid materials: Synthesis, characterization, and applications. Weinheim: Wiley - VCH, 2007.
Buscar texto completoQuantum materials: Lateral semiconductor nanostructures, hybrid systems and nanocrystals. Berlin: Springer, 2010.
Buscar texto completoHeitmann, Detlef, ed. Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1.
Texto completoC, Klein Lisa, ed. Organic/inorganic hybrid materials II. Warrendale, Penn: Materials Research Society, 1999.
Buscar texto completoKnut, Rurack y Martínez-Máñez Ramón, eds. The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, N.J: Wiley, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Nanostructured hybrid material"
Sakaushi, Ken. "Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions". En Functional Organic and Hybrid Nanostructured Materials, 419–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch11.
Texto completoThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas y Hanna J. Maria. "Semiconductors, Organic and Hybrid Nanostructures". En Nanostructured Materials, 69–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_6.
Texto completoYang, Sha y Wei Liu. "Nanostructured Hybrid Magnetic Materials". En Fundamentals of Low Dimensional Magnets, 111–24. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003197492-7.
Texto completoChoudhury, Soumyadip y Manfred Stamm. "Hybrid Nanostructured Materials for Advanced Lithium Batteries". En Hybrid Nanomaterials, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch1.
Texto completoSrivastava, Suneel Kumar y Vikas Mittal. "Advanced Nanostructured Materials in Electromagnetic Interference Shielding". En Hybrid Nanomaterials, 241–320. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch5.
Texto completoRajakumari, R., Abhimanyu Tharayil, Sabu Thomas y Nandakumar Kalarikkal. "Hybrid Nanostructures for Biomedical Applications". En Hybrid Phosphor Materials, 275–301. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90506-4_12.
Texto completoEldabagh, Noor, Jessica Czarnecki y Jonathan J. Foley. "Nanophotonics with Hybrid Nanostructures". En Novel Nanoscale Hybrid Materials, 201–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119156253.ch6.
Texto completoKim, Kyung-Min y Yoshiki Chujo. "Organic-Inorganic Hybrid Materials Based on Silsesquioxanes". En Macromolecular Nanostructured Materials, 197–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7_12.
Texto completoShea, K. J., J. Moreau, D. A. Loy, R. J. P. Corriu y B. Boury. "Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials". En Functional Hybrid Materials, 50–85. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch3.
Texto completoMatsushita, Satoshi, Benedict San Jose y Kazuo Akagi. "Functional Nanostructured Conjugated Polymers". En Functional Organic and Hybrid Nanostructured Materials, 547–73. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch15.
Texto completoActas de conferencias sobre el tema "Nanostructured hybrid material"
M, Mladenov, Petrov T, Petrov N, Budinova T, Tsyntsarski B, Saliyski N, Kovacheva D y Raicheff R. "Nanostructured Electrode Materials for Hybrid Li Battery-capacitor Systems". En 7th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-6555-9_166.
Texto completoShuvo, Mohammad Arif Ishtiaque, Md Ashiqur Rahaman Khan, Miguel Mendoza, Matthew Garcia y Yirong Lin. "Synthesis and Characterization of Nanowire-Graphene Aerogel for Energy Storage Devices". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86431.
Texto completoRani, Mamta y S. K. Tripathi. "Color-sensitive photoconductivity of nanostructured ZnO/fast green dye hybrid films". En PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810459.
Texto completoLima, R. S., C. Moreau y B. R. Marple. "HVOF-Sprayed Al2O3-TiO2 Coatings Using Hybrid (Nano+Submicron) Powders: An Enhanced Wear Performance". En ITSC2007, editado por B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima y G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0638.
Texto completoKannan, Balaji y Arun Majumdar. "Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures". En ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46053.
Texto completoStellman, Paul y George Barbastathis. "Actuation Control for Nanostructured Origami™". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16319.
Texto completoHou, Huidong, Jocelyn Veilleux, François Gitzhofera, Quansheng Wang y Ying Liu. "Hybrid Suspension/Solution Precursor Plasma Spraying of a Complex Ban (Mg1/3Ta2/3)O3 Perovskite: Effects of Processing Parameters and Precursor Chemistry on Phase Formation and Decomposition". En ITSC2018, editado por F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau y J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0105.
Texto completoWolff, Niklas. "Nanostructure of Semiconductor Hybrid Aero-Materials". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.563.
Texto completoAbdollahramezani, Sajjad, Hossein Taghinejad, Ali A. Eftekhar y Ali Adibi. "Reconfigurable metasurfaces in a hybrid material platform through integration of plasmonic nanostructures with phase-change materials (Conference Presentation)". En Photonic and Phononic Properties of Engineered Nanostructures VIII, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2300979.
Texto completoKubo, T., H. Wang y H. Segawa. "Solution-processed solar cells with nanostructured hybrid materials". En 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.b-5-01.
Texto completoInformes sobre el tema "Nanostructured hybrid material"
Haddad, Tim y Shawn Phillips. Nanostructured Hybrid Organic/Inorganic Materials. Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1998. http://dx.doi.org/10.21236/ada409298.
Texto completoHaddad, Timothy S., Russell Stapleton, Hong G. Jeon, Patrick T. Mather y Joseph D. Lichtenhan. Nanostructured Hybrid Organic/Inorganic Materials, Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, enero de 1996. http://dx.doi.org/10.21236/ada386916.
Texto completoLambrecht, Walter R. Magneto-Optical Properties of Hybrid Magnetic Material Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2007. http://dx.doi.org/10.21236/ada472402.
Texto completoBulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, enero de 2011. http://dx.doi.org/10.21236/ada547102.
Texto completo