Literatura académica sobre el tema "Nanosecond laser annealing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanosecond laser annealing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nanosecond laser annealing"
Pilipovich, V. A., V. L. Malevich, G. D. Ivlev y V. V. Zhidkov. "Dynamics of nanosecond laser annealing of silicon". Journal of Engineering Physics 48, n.º 2 (febrero de 1985): 228–33. http://dx.doi.org/10.1007/bf00871878.
Texto completoCasiez, L., N. Bernier, J. Chrétien, J. Richy, D. Rouchon, M. Bertrand, F. Mazen et al. "Recrystallization of thick implanted GeSn layers with nanosecond laser annealing". Journal of Applied Physics 131, n.º 15 (21 de abril de 2022): 153103. http://dx.doi.org/10.1063/5.0085107.
Texto completoLarrey, Vincent, Arthur Arribehaute, Brendon Caulfield, Pablo Acosta Alba, Christophe Morales, Paul Noël, Mathieu Opprecht, Frank Fournel, Didier Landru y Francois Rieutord. "Nanosecond Laser Irradiation for Interface Bonding Characterization". ECS Meeting Abstracts MA2023-02, n.º 33 (22 de diciembre de 2023): 1589. http://dx.doi.org/10.1149/ma2023-02331589mtgabs.
Texto completoZhvavyi, S. P. y O. L. Sadovskaya. "Nanosecond Laser Annealing of Implanted Silicon: Simulation of Dynamics". Physica Status Solidi (a) 112, n.º 1 (16 de marzo de 1989): K19—K22. http://dx.doi.org/10.1002/pssa.2211120166.
Texto completoGerlinger, Kathinka, Bastian Pfau, Martin Hennecke, Lisa-Marie Kern, Ingo Will, Tino Noll, Markus Weigand et al. "Pump–probe x-ray microscopy of photo-induced magnetization dynamics at MHz repetition rates". Structural Dynamics 10, n.º 2 (marzo de 2023): 024301. http://dx.doi.org/10.1063/4.0000167.
Texto completoPark, Sang Yeon, Younggon Choi, Yong Hyeok Seo, Hojun Kim, Dong Hyun Lee, Phuoc Loc Truong, Yongmin Jeon et al. "355 nm Nanosecond Ultraviolet Pulsed Laser Annealing Effects on Amorphous In-Ga-ZnO Thin Film Transistors". Micromachines 15, n.º 1 (5 de enero de 2024): 103. http://dx.doi.org/10.3390/mi15010103.
Texto completoAlloyeau, Damien, Christian Ricolleau, Cyril Langlois, Yann Le Bouar y Annick Loiseau. "Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles". Beilstein Journal of Nanotechnology 1 (22 de noviembre de 2010): 55–59. http://dx.doi.org/10.3762/bjnano.1.7.
Texto completoCoelho, João M. P., Catarina Silva, Andreia Ruivo y António Pires de Matos. "Infrared Nanosecond Laser Radiation in the Creation of Gold and Copper Nanoparticles". Materials Science Forum 730-732 (noviembre de 2012): 915–19. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.915.
Texto completoDeng, Ying, Anthony Pelton y R. A. Mayanovic. "Comparison of Vanadium Oxide Thin Films Prepared Using Femtosecond and Nanosecond Pulsed Laser Deposition". MRS Advances 1, n.º 39 (2016): 2737–42. http://dx.doi.org/10.1557/adv.2016.311.
Texto completode Silva, Milantha, Seiji Ishikawa, Takamaro Kikkawa y Shinichiro Kuroki. "Low Resistance Ohmic Contact Formation on 4H-SiC C-Face with NbNi Silicidation Using Nanosecond Laser Annealing". Materials Science Forum 858 (mayo de 2016): 549–52. http://dx.doi.org/10.4028/www.scientific.net/msf.858.549.
Texto completoTesis sobre el tema "Nanosecond laser annealing"
Esposito, Laura. "Mise en oeuvre de procédés innovants pour l'optimisation de contacts TiSi pour les technologies imageurs avancées". Electronic Thesis or Diss., Aix-Marseille, 2021. http://theses.univ-amu.fr.lama.univ-amu.fr/210319_ESPOSITO_505pj561fjb969hmp55qmrno_TH.pdf.
Texto completoIn image sensor devices, Ti silicides are used to establish contacts between transistors and copper interconnects. A new problematic emerges with the co-integration of Ti-based and Ni-based silicided contacts: the titanium silicide (C54-TiSi2) needs to be formed at a lower temperature than the conventional formation temperature (800°C). In order to reduce the temperature of silicide formation, the influence of nanosecond laser annealing on Ti silicide contact formation has been investigated in this PhD work. To do so, consecutive deposition of Ti and TiN films with thicknesses below 10 nm were carried out after a specific surface treatment. Annealing by UV nanosecond laser (UV-NLA) at different energy densities, different numbers of shots and followed by rapid thermal annealing (RTA) for various temperatures were performed. The different samples were characterized by several methods including: four-point probe measurements, X-ray diffraction, and transmission electron microscopy. The main results obtained with the use of UV-NLA are the following: it enables the formation of an amorphous phase in the solid state and the formation of the metastable C40-TiSi2 phase becomes possible by melting the first nanometers of the substrate. By combining multiple laser shots and a subsequent RTA, the formation of the C54-TiSi2 phase at low temperature of 650 °C has been demonstrated. Studies carried out on doped and/or polycrystalline substrates, as well as on wafers with nanometric patterns indicate that, in the current state, the integration of UV- NLA into the industrial process is more complex than expected. Prospects for promoting the integration of UV-NLA are also discussed
Larmande, Yannick. "Réalisation de jonctions ultra-minces par recuit laser : applications aux détecteurs UV". Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22114/document.
Texto completoSince the 1970’s, the components size has steadily declined. The realization of highly-dopedultra shallow junctions became a key point in the reduction of microelectronic devices. Them anufacturing processes must evolve to meet the stringent specifications of the next technologynodes, in particular in terms of dimension and electrical properties of the doped area.In this thesis we have studied the process of laser annealing of dopants implanted by plasmaimmersion. The ArF excimer laser we used is absorbed in less than 10 nm of silicon, whichallows a local heating. Moreover, the short pulse duration provides a low thermal budget whichreduces the dopant diffusion. By combining this technique with plasma immersion ion implantation, which is interesting because of the very low acceleration voltage (few tens of eV), we can produce highly activated junctions without diffusion. After a presentation of the different doping techniques that may be used, we describe the experimental treatment and the characterization tools that we used. We have used numerical simulations to understand the role of the laser parameters on the temperature profile of the silicon surface. After choosing the most suitable laser between ArF, KrF and XeCl (respectively :193 nm - 15 ns, 248 nm - 35 ns, 308 nm - 50 ns), we studied the influence of the number of shots and beam shaping to optimize the process. Finally, inhomogeneities caused by the beam edgeshave been studied and identified in order to improve the laser scan process
Darif, Mohamed. "Etude de la recristallisation du silicium par procédé laser nanoseconde pour la formation et le contrôle des jonctions ultraminces". Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00639065.
Texto completoCapítulos de libros sobre el tema "Nanosecond laser annealing"
Balandin, V. Yu, A. V. Dvurechenskii y L. N. Aleksandrov. "INTERMEDIATE CRYSTALLIZATION OP AMORPHOUS SILICON LAYERS AT NANOSECOND FUISED LASER ANNEALING". En EPM 87. Energy Pulse and Particle Beam Modification of Materials, 524–26. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112611203-140.
Texto completoIvlev, G. D. "INTERMEDIATE CRYSTALLIZATION OF ION-IMPLANT ED SILICON DURING NANOSECOND LASER ANNEALING". En EPM ’89: 3rd International Conference on Energy Pulse and Particle Beam Modification of Materials, September 4.–8. 1989, Dresden, GDR, 231–33. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112575666-048.
Texto completoZhvavyi, S. P. y O. L. Sadovskaja. "SIMULATION OP NANOSECOND LASER ANNEALING OP SILICON ALLOWING FOR CRYSTALLIZATION OP SUPERCOOLED MELT". En EPM 87. Energy Pulse and Particle Beam Modification of Materials, 533–35. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112611203-143.
Texto completoActas de conferencias sobre el tema "Nanosecond laser annealing"
Jourdan, Nicolas, Fabien Roze, Toshiyuki Tabata, Stephane Lariviere, Antonito Contino, Fulvio Mazzamuto y Tokei Zsolt. "UV nanosecond laser annealing for Ru interconnects". En 2020 IEEE International Interconnect Technology Conference (IITC). IEEE, 2020. http://dx.doi.org/10.1109/iitc47697.2020.9515608.
Texto completoAbdou, N. Zerhouni, P. Acosta-Alba, L. Brunet, M. Opprecht, F. Milesi, M. Gallard, S. Reboh y I. Ionica. "EZ-FET junctions activation by nanosecond laser annealing". En 2023 21st International Workshop on Junction Technology (IWJT). IEEE, 2023. http://dx.doi.org/10.23919/iwjt59028.2023.10175175.
Texto completoSulehria, Yasir, Oleg Gluschenkov, Michael Willemann y Shaoyin Chen. "Energy Density and Temperature Calibration for FEOL Nanosecond Laser Annealing". En 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2020. http://dx.doi.org/10.1109/asmc49169.2020.9185306.
Texto completoCristiano, F., Y. Qiu, E. Bedel-Pereira, K. Huet, F. Mazzamuto, G. Fisicaro, A. La Magna et al. "Extended defects in ion-implanted si during nanosecond laser annealing". En 2014 14th International Workshop on Junction Technology (IWJT). IEEE, 2014. http://dx.doi.org/10.1109/iwjt.2014.6842019.
Texto completoMathieu, Benoit, Claire Fenouillet-Beranger, Sebastien Kerdiles y Jean-Charles Barbe. "Thermal simulation of nanosecond laser annealing of 3D sequential VLSI". En 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2015. http://dx.doi.org/10.1109/sispad.2015.7292269.
Texto completoRoyet, A.-S., L. Dagault, S. Kerdiles, P. Acosta Alba, J. P. Barnes, F. Cristiano y K. Huet. "Undoped SiGe material calibration for numerical nanosecond laser annealing simulations". En 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2020. http://dx.doi.org/10.23919/sispad49475.2020.9241664.
Texto completoBESAUCELE, HERVE, LAURENT RUET, AUDREY ADNET, FRANCOIS BEAU, CEDRIC BELLIER, PAUL CECCATO, MAXIME CHATELAIN et al. "High energy excimer laser system for nanosecond annealing of semiconductor devices". En XXII International Symposium on High Power Laser Systems and Applications, editado por Paolo Di Lazzaro. SPIE, 2019. http://dx.doi.org/10.1117/12.2522443.
Texto completoTabata, Toshiyuki, Pierre-Edouard Raynal, Fabien Roze, Sebastien Halty, Louis Thuries, Fuccio Cristiano, Emmanuel Scheid y Fulvio Mazzamuto. "Copper Large-Scale Grain Growth by UV Nanosecond Pulsed Laser Annealing". En 2021 IEEE International Interconnect Technology Conference (IITC). IEEE, 2021. http://dx.doi.org/10.1109/iitc51362.2021.9537312.
Texto completoEsposito, Laura, Sebastien Kerdiles, Magali Gregoire y Dominique Mangelinck. "Impact of Nanosecond Laser Annealing on the Formation of Titanium Silicides". En 2021 20th International Workshop on Junction Technology (IWJT). IEEE, 2021. http://dx.doi.org/10.23919/iwjt52818.2021.9609410.
Texto completoChih-Chao Yang, Tung-Ying Hsieh, Wen-Hsien Huang, Hsing-Hsiang Wang, Chang-Hong Shen y Jia-Min Shieh. "Sequentially stacked 3DIC technology using green nanosecond laser crystallization and laser spike annealing technologies". En 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2015. http://dx.doi.org/10.1109/ipfa.2015.7224423.
Texto completo