Tesis sobre el tema "Nanoparticules de silice greffées"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Nanoparticules de silice greffées".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bonnevide, Marine. "Nanocomposites élastomère-nanoparticules de silice greffées : de la synthèse aux mécanismes de dispersion". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0354.
Texto completoThe addition of nanometric fillers into a polymer matrix significantly improves its use properties. Optimization of nanocomposite reinforcement is related to the filler dispersion state in the matrix as well as to the filler/filler and filler/matrix interactions. In the tire industry, numerous studies have been devoted to these parameters in order to understand and control the reinforcement of elastomeric matrices such as Styrene Butadiene Rubber by silica nanoparticles. On an industrial scale, functional polymer or coupling agents such as bis(triethoxysilyl)propyl tetrasulfide are used to improve the dispersion of silica particles in elastomers and strengthen the matrix. However, it is difficult to control the grafting density and to modulate some parameters that may influence the dispersion state and interactions e.g. the nature and molar mass of the polymer chains covalently attached to the surface. To address these limitations, in this project we propose to synthesize silica nanoparticles grafted with polyisoprene, polybutadiene and statistical poly(butadiene-co-styrene) chains using the “grafting from” method associated to nitroxide mediated polymerization. In this aim, an alkoxyamine is grafted onto the nanoparticle surface in two steps by keeping the colloidal stability of the particles. After optimizing grafting parameters and polymerize the different monomers, the obtained grafted nanoparticles are characterized in terms of molar mass, microstructure, grafting density and gyration radius of the grafted chains. Their dispersion state is evaluated in solution as well as in matrices of various molecular weight and composition after the elaboration of nanocomposites
Rose-Hélène, Maureen. "Aspects thermodynamiques et cinétiques de la complexation de cations métalliques (Cu²+ et Ni²+) par la 5-phénylazo-8-hydroxyquinoline (5Ph8HQ) et le cyclame greffés sur des nanoparticules de silice en suspension colloïdale". Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10060/document.
Texto completoWe considered both the thermodynamic and kinetic aspects of metal ions (Cu2+ and Ni2+) complexation by 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) and cyclam grafted onto silica nanoparticles in colloidal dispersion. Fumed silicas with specific areas of respectively 200 and 390 m2/g were selected to get stable colloidal suspensions. We demonstrated the ability of these colloids to extract trace elements (at micromolar level). We used the ultrafiltration process to separate the dispersed silica phase from the aqueous phase. We also showed interest of our solid dispersed phases instead of a pseudo micellar one. We described complexation kinetics by stopped flow technique for the fastest reactions. The influence of metal cation concentration, counter-ion nature (acetate or chloride), ionic strength and pH on observed rate constant has been investigated. To describe the Ni2+ kinetics with grafted 5Ph8HQ, we took into account the spectrophotometric properties of the complex on silica nanoparticles. This is an original behaviour of 5Ph8HQ on silica since the optical densities of solutions containing 5Ph8HQ solubilised in micelles or cyclam grafted onto silica follow the Beer-Lambert's law. The study of grafted cyclam whether the kinetics or equilibrium is complicated due to the release of the latter in solution
Rosal, Iker Del. "Modélisation de nanoparticules produites par voie organométallique et de catalyseurs greffés : structure, spectroscopie, réactivité". Toulouse 3, 2009. http://thesesups.ups-tlse.fr/1272/.
Texto completoThe work presented in this PhD manuscript concerns the study of surface chemistry and it is based on two questions asked by different experimental research groups. These questions cover different areas of surface chemistry, their answer would lead to a better understand the interactions occurring on these surfaces. This work is divided into two parts, each of which are based on the following issues: In which positions are the hydrogen atoms coordinated on the surface of ruthenium nanoparticles and which effect have the ligands on these atoms? It is of great interest in materials science to be able to control the size, shape and composition of nanoparticles (NPs) during their synthesis process. Their physico-chemical properties, comprised between those exhibited by small molecular compounds and the bulk, are one of the best advantages of these NPs. The NPs have an extremely rich surface chemistry, relatively little studied, that may influence both their chemical and physical properties. In this study, we are particularly interested in hydrogen atoms that play a key role in both the size and the shape of the NPs. However, their coordination mode remains unknown. To answer this first question, the NPs were modeled by two limit systems : small clusters and periodic surfaces. The study of these two systems allowed us, through a theory / experiments comparison of several spectroscopic data such as proton, deuterium NMR and infrared data to determine the most likely coordination mode of these hydrogen atoms and the effect of ligands on them. How organometallic catalysts are they grafted on a silica surface during catalytic supported reactions and which is the impact of the grafting mode on their reactivity ? The importance of catalysis both from an economic perspective (industrial) and environmental perspectives, requires the use of more efficient catalysts. One approach to achieve this goal is to have a better distribution and definition of active sites involved in heterogeneous catalysis process. One possibility to achieve this control is the use of supported catalysis. However, a prerequisite for this type of catalysis includes precise knowledge of the different types of interactions existing between the catalyst and its support. However, in the case of a lanthanide catalyst grafted on silica surface, the grafting mode remains unknown. As in the previous study, there are two methods to address this problem: either by a periodic approach, either by a molecular approach. Several different considerations led us to choose a molecular approach to conduct this study. For that purpose, we have created a molecular model that represents as accurately as possible the silica surface. The grafting reaction was then studied on this model, giving rise to different grafting modes, which are in accordance with the experimental data. Finally, a comparison between different catalytic reactions taking place with a metallocene lanthanide complex and the grafted catalyst above described has also been undertaken. Throught this investigation we could compare the reactivity of these two systems and determine the role of surface on the catalyst reactivity
Petit, Laurence. "Associations hybrides en milieu aqueux entre copolymères greffés et nanoparticules de silice : synthèse, structure et propriétés rhéologiques : application aux formulations thermostimulables". Paris 6, 2006. http://www.theses.fr/2006PA066544.
Texto completoRahma, Hakim. "Synthèse de nanofilms à greffons dendritiques pour l’immobilisation de biomolécules". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14593/document.
Texto completoBiofunctionalization of silica surfaces represents a crucial step for many applications in biotechnology such as biosensing and bioseparation. Monitoring the surface modification of the materials supports can improve their performances for the recognition of biological species. In this work, we have developed functional dendritic organosilanes of first and second generation for chemical modification of surfaces. These dendritic organosilanes RSiX3 (X = Cl or OMe3 or OEt3) were covalently grafted on planar silica or on core-shell superparamagnetic nanoparticles surfaces (gamma-Fe2O3/SiO2). The grafted surfaces were analyzed by AFM and TEM. They were also characterized by Infrared, contact angle and zetametry. These modified surfaces by dendritic molecules have shown high ability to immobilize biological molecules such as protein A or rabbit antibodies
El, Malti Wassim. "Modification de surface de supports inorganiques par des groupements organiques". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20208/document.
Texto completoThe objective of this thesis is the surface modification of two inorganic supports (mesoporous silica nanoparticles, calcium carbonate) by grafting organic molecules (organosilanes and phosphonates derivatives).Mesoporous silica nanoparticles (MSN) of MCM-41 type were synthesized by direct micro-emulsion and grafted under mild conditions using isocyanatopropyltrichlorosilane. Then, the reactivity of the isocyanate function was tested by post-modification using several amino nucleophiles. Synthesis, grafting and post-modification steps have been characterized by several physicochemical methods. MSN surface functionalized with a photolabile coupling agent have also been developed and tested under UV irradiation, with a view to prepare nanovalves for photo-controlled drug-delivery.The surface modification of nanoparticles of calcium carbonate (calcite) by phosphonate monolayers was investigated. The reaction conditions were optimized to favor grafting and prevent the dissolution of calcium carbonate leading to the precipitation of calcium phosphonate phases. Dense monolayers were obtained with different phosphonic acids in organic and aqueous media. The use of phosphonic esters (diethyl esters) was also explored. The modified nanoparticles were characterized by different techniques (NMR and IR spectroscopy, XRD, elemental analysis, electron microscopy, wettability testing) to identify the nature of the surface species
Cahagne-Leroux, Isabelle. "Etude de l'énantiosélectivité en CLHP de protéines greffées sur silice". Bordeaux 1, 1990. http://www.theses.fr/1990BOR10542.
Texto completoSidqi, Mohamed. "Conformation et propriétés thermodynamiques de chaînes greffées en surface d'une silice". Mulhouse, 1988. http://www.theses.fr/1988MULH0092.
Texto completoIssa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.
Texto completoThe problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Gracia, Marie. "Collage d'hydrogels par des nanoparticules de silice". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066013/document.
Texto completoIt is very challenging to achieve strong adhesion between two soft and wet materials like hydrogels. Recently Leibler and his collaborators invented a new concept to assemble hydrogels or biological tissues using nanoparticles. The principle relies on the adsorption of gel chains at the surface of nanoparticles, which act as connectors, and on the ability of the adsorbed gel chains to reorganize under stress. The main objective of this work is to identify and control the physical mechanisms fundamental to gel adhesion by silica nanoparticles. Many questions are investigated: the nature of the nanoparticles (size, surface chemistry, concentration, state of dispersion), the gel structure and its state of swelling, the distribution of the nanoparticles at the gel surface. Experiments are conducted using several types of gels: Poly(N,N dimethylacrylamide) (PDMA), Poly(acrylamide) (PAAm), nanocomposite gels (PDMA reinforces with silica nanoparticles), or double-network (DN) gels. We quantify the adhesive properties using lap-shear experiments, peeling tests at 90°, and Y-peeling tests that we developed. We use ATR-FTIR experiments, confocal microscopy and scanning electron microscopy to demonstrate the adsorption of polymers onto the silica nanoparticles and characterize their spatial repartition. The results allow us to propose a mechanism explaining the adhesion and to define conditions for optimal adhesion
Gracia, Marie. "Collage d'hydrogels par des nanoparticules de silice". Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066013.pdf.
Texto completoIt is very challenging to achieve strong adhesion between two soft and wet materials like hydrogels. Recently Leibler and his collaborators invented a new concept to assemble hydrogels or biological tissues using nanoparticles. The principle relies on the adsorption of gel chains at the surface of nanoparticles, which act as connectors, and on the ability of the adsorbed gel chains to reorganize under stress. The main objective of this work is to identify and control the physical mechanisms fundamental to gel adhesion by silica nanoparticles. Many questions are investigated: the nature of the nanoparticles (size, surface chemistry, concentration, state of dispersion), the gel structure and its state of swelling, the distribution of the nanoparticles at the gel surface. Experiments are conducted using several types of gels: Poly(N,N dimethylacrylamide) (PDMA), Poly(acrylamide) (PAAm), nanocomposite gels (PDMA reinforces with silica nanoparticles), or double-network (DN) gels. We quantify the adhesive properties using lap-shear experiments, peeling tests at 90°, and Y-peeling tests that we developed. We use ATR-FTIR experiments, confocal microscopy and scanning electron microscopy to demonstrate the adsorption of polymers onto the silica nanoparticles and characterize their spatial repartition. The results allow us to propose a mechanism explaining the adhesion and to define conditions for optimal adhesion
Duchet-Rumeau, Jannick. "Système modèle polyéthylène-verre : rôle de chaînes connectrices greffées sur l'adhésion". Lyon 1, 1996. http://www.theses.fr/1996LYO10270.
Texto completoHadioui, Madjid. "Synthèse d'hydroxyapatite et de silices greffées pour l'élimination de métaux toxiques en solution aqueuse". Toulouse 3, 2007. http://thesesups.ups-tlse.fr/115/.
Texto completoTwo convenient synthesis methods of heavy metals recovery materials have been described in this work. One relates to immobilization of polyamine ligands on silica gel surface in aqueous medium and the other on the synthesis of the hydroxyapatite under inexpensive conditions. Taking into account the regenerability of the synthesized products, the modification of the surface of silica gel led to satisfying grafting rates. Preparation of the calcium phosphate starting from calcium carbonate and ammonium phosphate at ambient temperature led to pure hydroxyapatite after calcination of the intermediate product and elimination of the CaO by washing with distilled water. The adsorption of Pb2+ ions on HA column led to the formation of lead phosphate microparticles. The rates of eliminated Pb2+ were relatively high and the studies at various flow rates showed that 1g of HA can recover up to 0. 5 mg of Pb2+ in one minute. The sorption of Pb2+ on the HA was also studied in the presence of EDTA and glycine in solution. Microanalyse results showed that Pb2+ ions are fixed in greater amount at less than 10 µm of the edge of the HA grains, while Cu2+, Cd2+ and Zn2+ diffuse inside the grains
Gal, François. "Nanostructures hybrides à base de nanoparticules de platine greffées de polymère et d’enzymes : élaboration, caractérisation et comportement électrochimique". Paris 6, 2010. http://www.theses.fr/2010PA066420.
Texto completoFisichella, Matthieu. "Biocompatibilité et trafic intracellulaire de nanoparticules de silice mésoporeuses". Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2009.
Texto completoDue to their physical and chemical properties, the mesoporous silica nanoparticles (MSNs) are good candidates for drug delivery applications. However, their toxicity and their intracellular trafficking remain unclear. During these works, we studied the cytotoxicity and the endocytosis of MSNs. We showed that the MSNs can be internalised by a variety of cell lines and rat astrocytes in culture without visible sign of important cytotoxicity. These nanoparticles did not present an observable in vivo toxicity in mice. Then we showed that the endocytosis of the MSNs was made by the clathrines coated pits and we proceeded to the intracellular delivery of a protein. We showed an escape of the lysosomes of this protein due to MSNs. Such an internalised protein escaped from lysosomes under the effect of MSNs. After linking folic acid to MSNs, we are able to target tumoral cells with these nanoparticles. During the preceding studies we observed that one of the most used tests in toxicology overestimated the cytotoxicity of MSNs because the latter nanoparticles modified intracellular traffic. Our works showed that the MSNs are internalized without damaging the cellular viability and we made the first experiments of drug delivery using our nanoparticles
Fisichella, Matthieu Hévor Tobias Saboungi Marie-Louise. "Biocompatibilité et trafic intracellulaire de nanoparticules de silice mésoporeuses". S. l. : S. n, 2009. http://intranet.univ-orleans.fr/bibliotheques/theses/fisichella_matthieu.pdf.
Texto completoTewa, Tagne Patrice. "Séchage par atomisation de nanoparticules polymériques". Lyon 1, 2007. http://www.theses.fr/2007LYO10063.
Texto completoGrosshans, Vièles Sarah. "Nanoparticules dérivant de précurseurs moléculaires dans des solides mésoporeux : synthèse et propriétés". Mulhouse, 2007. https://www.learning-center.uha.fr/opac/resource/nanoparticules-derivant-de-precurseurs-moleculaires-dans-des-solides-mesoporeux-synthese-et-propriet/BUS4012223.
Texto completoThe organized mesoporous silica (OMS) have many properties, making them excellent candidates as supports of nanoparticles dispersed in matrices. In particular, their regular porosity (site and arrangément) should favor the formation of nanoparticles with narrow size distributions and spatially well dispersed in the pares/charnels of the matrix. The aim of this PhD is to generate metallic nanoparticles into mesoporous silica matrices having controlled and organized porosity (OMS type MCM-41 or SBA-15) or without (xerogel). Our strategy consisted in the incorporation of molecular metallic precureurs in the pores of the silica matrix using varions methods and Men in generating metallic nanoparticles by reduction under controlled atmosphere. In a first part, the elaboration of OMS type MCM-41 materials with cobalt was carried out by direct synthesis using cobalt soap combined with C16TMABr, templating agent which is usually used for the synthesis of MCM-41. The cell parameter and the pores' sire of the samples depend on the amount of cobalt soap incorporaed. Indeed, the cobalt soap behaves like a co-surfactant in the synthesis of these samples, sine it forms with C16TMABr mixed micelles. Alter a suitable reducing heat traatment on calcined samples, cobalt nanoparticles were formed. In a second part, methods of incorporation by impregnation or grafting during a post-synthesis treatment of the cobalt cluster Co4(CO)Io(µ-NH(PPh2)2) were studied. These two methods lead to the formation of the Co2P phase. However, the conditions of heat traatment implemented did not result in nanoparticles confined into OMS. In a last part, bimetallic palladiummolybdenum clusters were incorporated by impregnation in two silica matrices ordered or rot. A suitable heat traaement led in botte cases to the formation of nanoparticles of new bimetallic phase (PdI,7Moo44P). The use of OMS matrix type SBA-15 materials, brings about formation of particles confined and dispersed in the pores of the mesoporous hosts. However, luger particles are obtained in the case of a xerogel matrix, featuring polydisperse and disordered pores
Aubert, Tangi. "Nanoparticules de silice fonctionnelles à base de cluster d'éléments de transition". Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00668367.
Texto completoLuo, Jingjie. "Formation de nanoparticules d'or supportées sur silice Stöber : mécanismes et applications". Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01038161.
Texto completoLim, Florence. "Mouvements moléculaires de copolymères statistiques aux interfaces de nanoparticules de silice". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS286.pdf.
Texto completoPolymer-based composites with silica particles are an important class of materials. In these systems, an improvement of some of the mechanical properties such as the elastic modulus compared to the neat polymer matrix may occur. The dynamics of polymer chains at the interfaces with the filler particles are one of the mechanisms responsible for this enhancement as shown in recent works on homopolymer-based nanocomposites [1]. Although statistical copolymers are good candidates as compatibilizing agents, there are only few theoretical studies on nanocomposites composed of statistical copolymers focusing on the influence of two types of units, hydrophilic and hydrophobic ones, on the nanocomposite mechanical behavior [2]. From an experimental point of view, this question remains to be adressed. The aim of this work is to describe the local properties of polymer chains at the organic-inorganic interfaces of nanocomposites based on silica nanoparticles and poly(ethylene glycol-ran-propylene glycol), P(EG-ran-PG), which is composed of hydrophobic units (PG) and hydrophilic units (EG). This description includes the nanocomposite microstructure, the local concentration of PG and EG units as a function of the distance with the nanoparticle surface and also the dynamical behavior of chain segments at the interfaces. These studies will be carried out in particular by relaxation experiments in solid-state NMR. The long-term goal of this project is to find some links between these information, obtained at the local length scale, and the mechanical behavior of these nanocomposites. SAXS experiments indicate a similar polymer/silica microstructure for both PEG and P(EG-ran-PG)-based nanocomposites. 1H and 13C solid-state NMR experiments evidence the occurrence of a “glassy” layer [3] at the interfaces including immobilized copolymer chain segments. Moreover, the presence of PG hydrophobic units seems to slow down the reorientational motions of EG units which translates an increase of the interactions between silica nanoparticles and the copolymer chain segments. References : [1] Oh, S. M.; Abbasi, M.; Shin, T. J.; Saalwächter, K.; Kim, S. Y. Phys. Rev. Lett. 2019, 123, 167801 [2] Trazkovich, A. J.; Wendt, M. F.; Hall, L. M. Macromol. 2019, 52, 513-527 [3] Golitsyn, Y.; Schneider, G. J.; Saalwächter, K. J. Chem. Phys. 2017, 146, 203303
Pisani, Cédric. "Etude toxicogénomique de nanovecteurs de silice mésoporeuse : relation entre décoration et toxicité". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS009/document.
Texto completoNanoparticles (NPs) capable of transporting and releasing therapeutic agents to target tissues constitute one of the most exciting areas in nanomedicine, especially magnetic mesoporous silica nanoparticles (M-MSN). M-MSNs may be addressed to tumors thanks to their magnetism and can act as drug carriers thanks to their high specific surface area. Nevertheless, the safety of these NPs with decorations, conferring them specific properties, must be assessed in order to avoid harmful effects on healthy tissues, in particular on the liver, the organ of xenobiotics metabolism.The goal of this thesis was therefore to evaluate the potential toxicity of M-MSN either pristine, or coated with polyethylene glycol (PEG), or surrounded by a lipid bilayer of 1,2-dimyristoyl-sn-glycero-3- Phosphocholine (DMPC). To this end, the human hepatic cell model HepaRG was chosen to realize in vitro toxicity testing and to elucidate the intracellular mode of action of these various NPs.The physico-chemical properties of pristine and covered M-MSNs were measured using different techniques such as dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). NPs toxicity was first evaluated by viability testing and real-time cell impedance analysis (xCELLigence).Gene expression profiles were then performed through very high density oligo microarrays (8x60k, Agilent) to evaluate, in a dose- and time-dependent manner, the toxicity of these NPs. In addition, the use of an original methodology for comparative analysis of large biological data allowed us to demonstrate the molecular mechanisms triggered by the NPs in the hepatocytes. We were able to determine the dose not triggering any toxicity as well as the dose inducing a slight transient toxicity after 24h. We thus defined this latter value as a threshold of biocompatibility with HepaRG cells. We also showed by TEM a slower uptake of PEGylated NPs by cells as well as their delayed effects on the transcriptome compared to the pristine and DMPC NPs. Nevertheless, a dose of 80 μg/cm² of pristine or covered M-MSNs triggers the chain of events of the hepatic cholestasis AOP (Adverse Outcome Pathway). This result demonstrates that this methodology is suitable for predictive toxicology by analysis of cellular biological responses after exposure to exogenous substances.Furthermore, NPs tend to be covered with proteins in the presence of serum (corona). Cell impedance analysis shows that M-MSNs surrounded by human or bovine serum proteins coronas do not trigger the same toxicity on human cells. This result raises the problem of a potential overestimation of NPs toxicity to human cells in in vitro testing by using fetal bovine serum in culture media.We undertook a dynamic analysis (between 30 s and 7 days) of the corona formation by tandem mass spectrometry has highlighted three groups of protein with distinct behaviors. The first cluster contains some abundant proteins that desorb over time, the second cluster comprises some protein families such as apolipoproteins, and the third cluster contains late enrichment proteins attracted by other proteins already present in the corona. A dynamic network of protein-protein interactions inside the corona, namely the interactome, was built from the data. This work opens the way to a possible control of the corona in order to provide the nanocarriers with stealth properties allowing them to reach target organs without being opsonized.These techniques used during this thesis and based on analyses of biological big data might be part of the future standards on nanosafety evaluation
Quignard, Sandrine. "Comportement des nanoparticules de silice en milieu biologique : des cellules aux biomatériaux". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00836093.
Texto completoBeaupré, Ariane. "SYNTHÈSE ET CARACTÉRISATION DE COQUILLE DE SILICE SUR NANOPARTICULES DE FLUORURE D’YTTRIUM". Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28972/28972.pdf.
Texto completoBeaupré, Ariane. "Synthèse et caractérisation de coquille de silice sur nanoparticules de fluorure d'yttrium". Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23653.
Texto completoBouchoucha, Meryem. "Développement de nanoparticules de silice mésoporeuse multifonctionnelles : synthèse, caractérisation et applications biomédicales". Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/28243.
Texto completoMesoporous silica nanoparticles (MSNs) have emerged as promising nanomaterials for biomedical applications owing to their unique properties: tunable size, high surface area, large pore volume, adjustable morphology and easily modifiable surface. The main objective of this thesis is to control these parameters to develop multifunctional MSNs for drug delivery and biomedical imaging. First, a selective surface functionalization strategy of MSNs was developed. Magnetic resonance imaging (MRI) probe molecule and polyethylene glycol was grafted preferentially at the outer surface. This approach is a straightforward and efficient strategy that leads to the design of potential theranostic nanoparticles without porosity loss and with high drug loading capacity. These nanoparticles not only have a remarkable MRI positive contrast enhancement but also allow a controlled drug release in physiological conditions. Then, the particle size control and surface chemistry functionalization of MSNs led to better control over loading and release of positively charged drug (doxorubicin (Dox) was used as an anticancer drug model), intracellular drug release efficiency, intratumoral diffusion, as well as tumor growth inhibition and therapeutic efficiency. Better performances were obtained with small phosphonated nanoparticles (< 50 nm). Afterwards, we demonstrated, both in vitro and in vivo, the impact of size and bioconjugation of MSNs with the antibody "Ri7" on the specific targeting of blood brain barrier endothelial cells (BMEC). 50 nm Ri7-MSN nanoparticles were shown to accumulate specifically and massively in BMEC. These results open the door to the potential application of such nanoparticles for therapeutic drug delivery to the endothelial cells of the blood-brain barrier, which are involved in several central nervous system diseases. Finally, labeling MSNs with fluorine compounds and gadolinium chelate molecules led to the development of nanoparticles as potential binuclear MRI probes (1H and 19F). These nanoparticles have shown their excellent relaxometric properties and their ability to be detected and generate a positive contrast in 1H and 19F MRI image. All this work represents a significant advance in the design of high colloidal stability silica-based nanovectors, which could provide novel theranostic nanocompounds.
Sahraoui, Zoubida. "Contribution à l'étude des phénomènes de dispersion en zone stationnaire à partir de silices greffées de chaînes alkyles". Lyon 1, 1987. http://www.theses.fr/1987LYO19001.
Texto completoVolland, Sabrina. "Les ionogels, nouveaux matériaux pour l'immobilisation de complexes et de nanoparticules métalliques : Applications". Montpellier 2, 2009. http://www.theses.fr/2009MON20182.
Texto completoThis work describes ionogels, materials composed by an ionic liquid confined in a silica matrix and their uses in catalyse and in the growth of metals nanoparticles. Ionic liquid is very attractive in a large range of domains: electrochemistry, catalyse and biocatalyse, optic, particles stabilisation. . . However, these ionic liquids have a high viscosity which makes the stirring difficult. In order to avoid this problem, new ways to confine an ionic liquid were developed. Among them, a method was created at the lab: the ionogels. They combine ionic liquid and solid properties. The influence of some synthetic parameters (sol-gel process conditions, ionic liquid choice. . . ) on the final structure of the material was studied. Moreover, different silica precursors were tested to have a mechanical amelioration. Besides, the interest of acetate palladium doped ionogels in catalyse was proved by the results of the Heck reaction experiments whereas the nanoreactors applications was explored with the in situ synthesis of palladium, gold and silver nanoparticles
Luo, Ming. "Synthèse et caractérisation de nanoparticules d'or greffées par le glutathion réduit en vue de l'obtention de réservoirs d'oxyde nitrique". Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0179.
Texto completoNitric oxide (NO) is a gaseous messenger playing numerous physiological roles, especially in the cardiovascular system. However, its bioavailability is limited due to a short half-life. The combination to thiols increases its stability and facilitates its storage and transport. Thus NO donor drugs represent a promising therapeutic approach in such diseases. The present study aimed at developing NO reservoirs. Firstly, serum albumin (SA) was S-nitrosated through three chemical pathways to prepare SA-SNO. Then, potential NO reservoirs with high loading capacity were developed by anchoring reduced glutathione (GSH) to dihydrolipoic acid capped gold nanoparticles, AuNP@DHLA. The obtained AuNP@DHLA-(GSH)n showed stronger antioxidant power and they will be able not to disturb the cell homeostasis. Its further poly-S-nitrosation will benefit from the S-nitrosation of SA as both macromolecular possess free thiols. In parallel, citrate ions stabilized AuNP were entrapped in multilayer polyelectrolyte films using layer-by-layer (LbL) assemblies, providing proof-of-concept of multilayer films as a useful tool to protect AuNP from degradation and increase the cyto/hemocompatibility toward biological elements. The present work opens the window to S-nitrosate AuNP@DHLA-(GSH)n either as a colloidal solution or immobilized in the multilayer system, which is expected to be applied into developing of NO eluting stent for the treatment of cardiovascular diseases
George, Isabelle. "Translocation de nanoparticules d'oxyde métallique au travers de la barrière respiratoire". Paris 7, 2014. http://www.theses.fr/2014PA077210.
Texto completoThe widespread use of nanoparticles (NPs) in many fields involves evaluating their potential adverse effects on human health. The respiratory tract represents the major route of exposure after NP exposure. In this context, our aim was the evaluation of NP translocation across an in vitro human bronchial epithelial monolayer in function of their physic-chemical characteristics and the state of epithelial integrity. For this purpose we used fluorescently labeled metal oxide NPs of different chemical composition, size and surface charges. Three cellular models (the human bronchial Calu-3 and NCI-H292 and alveolar A549 cell lines) were tested and the Calu-3 model appears to be the most appropriated for in vitro development of a tight epithelium after culture in a two compartments chamber. We have demonstrated that all NPs could translocate through transcytosis according to their NP physico-chemical characteristics. Indeed we have determined that: i) Smaller NPs cross more than the larger ones, ii) Negative NP translocation is higher than for positive NPs and iii) Protein or lipid corona formation around NPs induce a modulation of the translocation. The state of integrity of the epithelial monolayer is also an important issue for NP translocation. Epithelial tight junction opening after an inflammatory context led to a significant increase of NP passage through the paracellular route. In conclusion, this study have demonstrated the NP capacity to translocate across epithelial barriers and the interest to develop in vitro cellular models for studying the importance of NP physico-chemical characteristics as well as the state of integrity of the monolayer in this mechanism
Mougin, Bruno. "Elaboration de matériaux nanocomposites polyamide 6,6-silice par génération in situ de la charge inorganique au cours du procédé d'extrusion". Lyon 1, 2005. http://www.theses.fr/2005LYO10079.
Texto completoPuech, Nicolas. "Structures et propriétés rhéologiques de réseaux transitoires chargés par des nanoparticules de silice". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00353271.
Texto completoDe, Crozals Gabriel. "Multi-fonctionnalisation par synthèse supportée de nanoparticules de silice pour des applications biomédicales". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10264.
Texto completoNanomaterials combining targeting, imaging, therapy and sensing properties are of growing interest for biomedical applications. The work reported in this thesis concerns nanoparticle (NP) multifunctionalization by solid phase synthesis. The solid support developed in this study is composed of a porous glass material on which silica NPs are temporarily grafted. Nanoparticle surface functionalization was performed by automated synthesis using phosphoramidite chemistry. Firstly, high surface loadings from 5000 to 7000 oligonucleotides per NP were achieved, representing a functionalization 10 to 20‐fold greater than those obtained by coupling methods in solution. DNA strands synthesized on NPs showed a good accessibility for hybridization with a complementary DNA strand, paving the way for therapeutic applications or integration of these objects in detection systems. The second part of this work was devoted to the vectorization of a therapeutic protein, GCSF (Granulocyte‐Colony Stimulating Factor) by nanoparticles that also exhibited imaging properties. These therapeutic nanocarriers showed cell stimulating properties in vitro and spleen targeting, which is a reservoir of neutrophils, in vivo. Finally, it was demonstrated that the solid phase modification of NPs opens interesting perspectives for the production of complex nanoparticle assemblies (dimers and asymmetric NPs)
Charlot, Aude. "Élaboration et caractérisation de revêtements submicroniques obtenus par électrodéposition de nanoparticules de silice". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2014. http://www.theses.fr/2014ENCM0003/document.
Texto completoThe development of a submicron coating was carried out by electrophoretic deposition (EPD)of silica nanoparticles. This approach allows controlling the thickness of the deposits which is a parameter to adjust to develop a selective absorber coating dedicated to a photothermal sensor. The composition of the desired coating is a co-deposition of silica and carbon. For the understanding and the control of EPD deposition mechanisms, silica deposit is first studied. Two systems were investigated: silica deposited on a silicon wafer or platinum substrate, respectively noted SiO2/Si and SiO2/Pt. A commercial colloidal suspension, Ludox® HS-40, is used to realize stable diluted sols of monodispersed silica nanoparticles (12 nm diameter), negatively charged. Anodic EPD is performed in aqueous medium from this sol.The applied potential, the initial concentration of nanoparticles and the deposition time are investigated. When the applied potential is too high, the water electrolysis phenomenon occurs. More particularly, the platinum-based system is limited by this phenomenon, from a potential of +2 V. The high conductivity of this substrate promotes gassing phenomenon. This subsequent bubbling degrades the cohesion of the coating. However, an applied potential lower than the electrolysis potential gives some good deposition conditions. Similar phenomena were also observed with SiO2/Si system. However, the semiconductor properties of the silicon wafer enable to apply higher potential (up to +40 V) by reducing the phenomenon of electrolysis. Optimizations of the deposition conditions on these two systems have yielded experimental deposition conditions consistent with the objective, namely: a potential of +1 V to SiO2/Pt system and of +3 and +30 V for SiO2/Si system, a concentration between 1 and 10 %mass, and a deposition time of 1 hour.Under optimum conditions defined above, the physicochemical properties of the initial suspension are modified by adding a co-solvent (EtOH), a salt (Na2SO4) or a polymer (PAA or PVA) in order to study the influence of the dispersing medium, the conductivity of the suspension or the zeta potential of the nanoparticles on the thickness of the deposits. These additions have increased the thicknesses of coatings, especially for SiO2(EtOH)/Pt system and systems based on PAA. The addition of some carbon compounds (PVA or PAA) in the suspension was also studied to obtain after calcinations (500 °C) a coating with interesting characteristics for the intended application. Coating obtained with SiO2(PAA)/Pt system exhibit a significant optical selectivity. However, the value of the alpha/epsilon ratio remains below 7, which is lower than the values obtained for the same type of system with conventional sol-gel processes
Rahmani, Saher. "Élaboration de nanoparticules de silice mésoporeuse et d'organosilice pour des applications en nanomedecine". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT190.
Texto completoThis work is dedicated to the development, characterization and application of nanoparticles of mesoporous silica (MSNs) and organosilica (PMOs) nanoparicles. Silica nanoparticles became the subject of intense research worldwide for many reasons: their unique chemical and physical characteristics, high biocompatibility, various shapes ranging from spheres to rods with tunable diameter, easily functionalizable surface, and the ability to be used as a shell on different type of inorganic nanoparticles such as gold, iron oxide, lanthanide nanoparticles. In this dissertation mesoporous silica NPs and organosilica NPs have been designed, optimized and fully characterized. These two types of silica NPs have been applied for biological applications (drug delivery and bioimaging).First, mesoporous silica nanoparticles (MSNs) were designed and were covalently coated with antioxidant molecules, namely, caffeic acid (MSN-CAF) or rutin (MSN-RUT), in order to diminish the impact of oxidative stress induced after transfection into cells. Two cellular models involved in the entry of nanoparticles in the body were used for this purpose: the intestinal Caco-2 and the epidermal HaCaT cell lines. Rutin gave the best results in terms of antioxidant capacities preservation during coupling procedures, cellular toxicity alleviation, and decrease of ROS level after 24 h incubation of cells with grafted nanoparticles.Secondly, we studied the control of the shape of MSNs by the addition of ethanol (EtOH) as cosolvent. Spherical (MSNA) or Rod MSNs (MSNR) were obtained, and then loaded loaded with doxorubicin and incubated with MCF-7 breast cancer cells. MSNA and MSNR particles were efficient in killing cancer cells but their behaviour in drug delivery was altered on account of the difference in their morphology.Then, the syntheses of new organosilica nanoparticles are reported. These nanomaterials are exclusively synthesized from bis (triethoxysilylpropyl) amine (BTSPA), bis (3-methoxysilyl propyl) -N-methylamine (BMSPMA) and bis- (triethoxysilyl) ethane precursors. First, it is reported the synthesis of hollow organosilica NPs (HPONPs) obtained through the condensation of bis (triethoxysilylpropyl) amine precursor by sol-gel process. HPONPs were used then for methotrexate delivery in MCF-7 cells. Secondly, it is reported the synthesis of other types of hollow organosilica NPs (HMONPs) obtained through the condensation of bis (3-methoxysilyl propyl) -N-methylamine precursor. In order to enlarge the cavity of NPs, we reported the use of TEB as swelling agent leading to the synthesis of HMLONPs. The morphology and the compositions of the NPs were fully characterized by various techniques and the pepstatin delivery from HMLONPs are under considaration. To add biodegradability to the nanocarriers, mixed nanoparticles were synthesized through the condensation of bis (3-methoxysilyl) propyl methylamine and the bis [3-(triethoxysilyl) propyl] disulfide. Different nanoplatforms were designed and fully characterized. The biodegradability was assessed in near-physiological conditions. Furthermore, the synthesis pathway was modified to design ethylene-porphyrin based organosilica nanoparticles. These nanoparticles were tested in vitro with breast cancer cells and used for methotrexate and gemcitabine monophosphate delivery.Finally, gold core shell mixed organosilica nanoparticles were described. The mixed shell of these nanoparticles was obtained by the co-condensation of bis- (triethoxysilyl) ethane and the bis (3-(triethoxysilyl) propyl)tetrasulfide. These biodegradable nanoparticles were tested in vitro with breast cancer cells for photon fluorescence imaging and core shell NPs were studied for drug delivery
Puech, Nicolas. "Structure et propriétés rhéologiques de réseaux transitoires chargés par des nanoparticules de silice". Montpellier 2, 2008. http://www.theses.fr/2008MON20153.
Texto completoStructural and rheological properties of viscoelastic fluids - transient networks filled with silica nanoparticles - have been studied. Three different viscoelastic matrices have been prepared: two connected and filled microemulsion networks with different droplet sizes (30 and 100 Å) and an aqueous telechelic tribloc copolymer gel. The two characterisation techniques, rheology and small angles neutron scattering allow us to link the rheological properties to the structure of this filled matrix. The rheological reinforcement factor of the gel is greater than the theorical predictions by Smallwood and Einstein, which apply to elastomers and dilute colloidal solutions. The structure measured by small angles neutron scattering proves that silica nanoparticles are well dispersed in the viscoelastic medium. A surfactant layer appears to be absorbed on the hydrophilic surface in the microemulsion case. This phenomenon leads to an increase of the number of active links per unit volume upon addition of silica nanoparticles. Macroscopically, this increase allows us to understand the shift of the percolation thresholds
Lassiaz, Stéphanie. "Modification de surface d'alumine et de silice en milieu aqueux par greffage d'acide alkylphosphonique". Montpellier 2, 2005. http://www.theses.fr/2005MON20057.
Texto completoThe goal of this study is the surface modification of silica nanoparticles in aqueous media by grafting alkylphosphonic acid molecules. As Si-O-P bonds are unstable toward hydrolysis, the grafting is done by aluminium species deposited on the nanoparticles surface that is to say by Si-O-Al-O-P bonds. First, a study of the grafting of alkylphosphonic acid molecules onto alumina nanoparticles surface, used as a model, has been carried out. Then two strategies have been followed to modify silica nanoparticles surface: (a) the grafting of alkylphosphonic acid molecules on the surface of nanoparticles industrially modified by aluminium surface species and (b) the surface modification of silica nanoparticles by successive additions of aluminium salt then alkylphosphonic acid. The different nanoparticles functionalised by alkyl chains obtained have been characterised by thermogravimetric analysis, NMR MAS 31P, elementary analysis, infra-red spectroscopy, nitrogen adsorption-desorption at 77 K, hexane and water adsorptions at 25 °C and by a floating test in methanol/water mixing (“methanol number”). Grafting parameters have been optimised which allow us to synthesize nanoparticles with different covering rates and thus to control their hydrophobicity and their surface polarity on a large scale
Jamon, Damien. "Etude et application des anisotropies optiques de gels de silice dopés par des nanoparticules magnétiques". Saint-Etienne, 2000. http://www.theses.fr/2000STET4011.
Texto completoGiret, Simon. "Nanoparticules de silice hybride à empreinte moléculaire comme transporteur pH-sensible de principes actifs". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2014. http://www.theses.fr/2014ENCM0006.
Texto completoThis thesis is part of the research against cancer, one of the major challenges for our society. The objective is to optimize the action of active compounds by reducing side effects for the patient. For this we want to develop pH-sensitive silicic nanocarriers able to accumulate specifically in solid tumors through the EPR effect.The work detailed in this manuscript describes the synthesis of new 5-Fluorouracil derivatives anticancer drugs able to complex via H-bonds hybrid silica precursor with triazine molecular recognition motif. This complex trapped in the solid through sol-gel process is then used to create autonomous and pH-controlled drug delivery system with non-premature release. These systems, evaluated in-vitro on breast cancer cells, have significant cytotoxicity.The encouraging results obtained suggest in-vivo experiments for our systems. For that, we are currently improving our nanomachines by introducing a heart of iron oxide for MRI imaging and confirm their efficiency on solid tumors
El, Hawi Nancy. "Silice en milieu non alcoolique : synthèse de nanoparticules et enrobage de nano-objets magnétiques". Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000257/.
Texto completoThe synthesis of silica nanoparticles has been developed in protic media (alcohol and/or water). This excludes the direct association with methods or compounds used in non-polar media (organometallic chemistry, polymers). In this work, we present a novel method for silica synthesis in a non-alcoholic media. Highly condensed (condensation rate of 93%) silica nanoparticles of controlled size (diameter ranging from 20 to 150 nm) were synthesized using this new process in aprotic solvents (THF and DME). The study of the influence the different parameters (solvent, stabilizer, catalyst, concentration of the reactants, temperature, water amount) allowed to control the formation rate of the nanoparticles. A detailed NMR study in solution and in solid state showed that the solvent and the primary amine (used as catalyst) are involved in the stabilization processes. The silica core is surrounded by an organic shell which includes alkylammonium (derived from the used amine) as well as water and solvent molecules. The opportunity for coating metallic nanoparticles using this method has been briefly assessed with iron nanoparticles and this work shows compatibility between the synthesis media. The study of the coating of FeCo nanoparticles leads to the most significant result since, by controlling the molar ratio H2O/FeCo, we are able to maintain the initial magnetic properties of the FeCo objects. This represents the breaking of the first blocking point toward the use of oxidable metallic particles in air. The control of the different experimental parameters (temperature, solvent, concentration, "prehydrolysis", sonication) allows to obtain objects which size varies from 40 to 100 nm and which contain about ten FeCo nanoparticles coated with silica
Perrin, Elsa. "Caractérisation de composites polymères / nanoparticules de silice : une étude de dynamique moléculaire gros-grains". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE047/document.
Texto completoPolymer/silica interface is investigated using coarse-grained molecular dynamics simulations. In particular, the different behavior of poly(acrylamide) (PAAm) and of poly(N,N-dimethylacrylamide) (PDMA) on the silica surface is compared. First, we show that the macroscopic behavior of PAAm and of PDMA is correctly represented by a model containing an explicit solvent. Then, the umbrella sampling free energy method is used to probe the detachment of PAAm and of PDMA from a silica surface and to investigate important features that allow - or not - the polymer chain to remain adsorbed on the silica surface. We proved that intramolecular interactions within the polymer and polymer/surface interactions are of first importance for the polymer chain to adsorb on silica. Surprisingly, solvent/polymer as well as solvent/surface interactions are not discriminating criteria. Polymer chains are finally constrained to a particular configuration where one chain is adsorbed on two silica surfaces that are 200 Å apart. This yields interesting insights into the evolution of the monomers lability and of the surface/polymer strength interaction when the two silica surfaces are moved apart
Moulin, Robinson. "Matrices de silice mésoporeuses pour le développement de nanomatériaux multifonctionnels". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS397/document.
Texto completoWith the raise of information technology, the amount of data created and exchanged increases drastically. Information storage must evolve to be more and more efficient, but the current materials used are reaching their peak. A technological evolution is needed. One of the possible answers is found with the photo-switchable coordination polymers, which property would allow us to attain storage density as well as addressing times never seen before. In order to use these materials, their processing, and especially their size reduction, is the key. However, successfully processing these without impacting the switching property is not an easy task. In this work, we propose a perfectly controlled processing based on mesoporous silica for the synthesis of nanoparticles of potentially applicative coordination compounds. To be specific, our work intends to (i) reduce the size of functional compounds, (ii) study the property at the nanoscale, (iii) use the possibilities of our synthesis to understand the effect of processing on the property and (iv) obtain new properties, caused by the processing. We therefore hope to lay a solid basis for the nanoscale study of these functional compounds
Ouellet, Samuel. "Lumière sur le transfert d’énergie résonant entre métal et fluorophores : à la recherche des photons perdus". Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/39750.
Texto completoThèse en cotutelle : Université Laval, Québec, Canada, Philosophiae doctor (Ph. D.) et Université de technologie de Troyes, Troyes, France
La nano-optique ouvre des portes à de nouvelles technologies afin de développer de nouveaux moyens de détections. L’avantage d’utiliser ce type de technologie provient de la taille nanométrique où les propriétés de la matière sont différentes de celle à l’état macroscopique. Notamment, lors de l’excitation de nanoparticules métalliques par des photons, il y a une oscillation harmonique du nuage électronique des électrons de surface formant ainsi un plasmon. La résonance plasmon peut interagir avec la matière à proximité. Par exemple, lorsqu'un fluorophore organique est placé à proximité du plasmon, il peut y avoir un couplage entre les dipôles des deux entités pouvant produire un transfert d’énergie. Dans certains cas, la particule peut absorber cette énergie et la redistribuer dans ses différents canaux de désexcitation radiatifs ou non. Dans ce projet, des nanoparticules composées d’un cœur de silice, d’une coquille d’or et d’une couche de silice externe ont été synthétisées. En dopant la silice des différentes couches avec deux types de fluorophores organiques, il sera possible d’étudier les différents modes de désexcitation du plasmon des nanocoquilles d’or. Les propriétés spectroscopiques des fluorophores tels le taux d’émission et le temps de vie de fluorescence sont influencés par les propriétés du plasmon. En étudiant ceux-ci en fonction de leur emplacement au sein de la structure, nous serons en mesure de décrire les qualités du plasmon des particules synthétisées par voie chimique.
Nano-optics is a gateway for new technologies that helps developing new detection methods. The advantage of using this type of technology comes from the nanometric scale where the properties of materials are different from that of the macroscopic state. For instance, when a metallic nanoparticle is excited by photons, there is a harmonic oscillation of the electron cloud of the surface’s electrons thus forming a plasmon. This oscillator can interact with its surrounding medium. As it is when a dye molecule is placed in the vicinity of the plasmon, there’s a coupling between the dipoles of the two entities allowing energy transfers. In some case, the particle can redistribute this energy through different channels of de-excitation leading to radiative and non-radiative path. In this project, the nanoparticles synthesized have a silica core with a gold shell topped with a silica layer. To study the plasmon’s de-excitation paths in the gold nanoshell, we have doped the silica core and shell with two kinds of fluorescent molecules. The interaction between the fluorophores and the plasmon can be seen by the modification of the spectroscopic properties of the dyes such as the emission rate and the fluorescence lifetime. By studying these according to their location within the structure, we will be able to describe the plasmon’s attributes of the chemically synthesized particles.
Grekov, Denys. "Apport de la RMN du solide de l’17O à l’étude structurale d’espèces moléculaires et greffées sur silice pour la métathèse des oléfines". Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10104.
Texto completoThis manuscript aims at the use of 17O solid state NMR for accessing the structure of well-defined silica-supported oxo-tungsten species related to industrial olefin metathesis catalysts. As a first step, to compensate for the low receptivity of 17O, signal enhancement techniques such as DFS (Double Frequency Sweep) and HS (Hyperbolic Secant) were critically assessed for such systems featuring large range of anisotropic interactions. DFS proved to be the most robust method, providing a signal enhancement of 2-2.4. In a second stage, series of molecular and silica-supported tungsten-oxo complexes have been studied by 17O MAS NMR, following isotopic enrichment of the oxo moiety. The W=O NMR parameters showed a high sensitivity to the metal coordination sphere, thus allowing structural assessment of grafted species when combined with DFT calculations. Silica-surface selective 17O labelling also afforded deeper understanding of these systems, most particularly regarding metal-support interactions. Further elements were obtained thanks to application of methods for high resolution (17O MQ MAS) and heteronuclear correlation (1H-17O HMQC). Some perspectives of this work are drawn, most particularly on the related molybdenum surface chemistry
Wynands, Lucie. "Synthèse d'organocatalyseurs à structure saccharidique et immobilisation sur silice". Amiens, 2014. http://www.theses.fr/2014AMIE0102.
Texto completoNew stereoselective synthesis methods are of peculiar interest. In this field organocatalysis plays an important part. We noticed that few organocatalysts bearing a saccharidic skeleton have been developed, the synthesis of new aaminotetrazole on a furanose or pyranose ring was undertaken, and those compounds were studied in the aldolisation reaction. An enzymatic resolution study of the aldol product was also done and lead to the settlement of conditions for an organo and bio-catalyzed one pot- 3 steps reaction, which involve a cascade of successive aldolisation-dehydration- Michael addition. In order to facilitate catalyst removal at the end of the reaction and its recycling, immobilization on silica was performed. First, simple carbohydrates were used to settle reaction conditions. The binding affinity of those materials toward concanavaline A was examined. Then in the same way, glycocatalysts were immobilized on spherical nanoparticles prepared via the Stôber process and on mesoporous silica (SBA-15). The obtained materials were also studied as organocatalysts in the aldol reaction
Cousinié, Sandra. "Nanoluminophores inorganiques : greffage de complexes de ruthénium(II) et d'europium(III) sur nanoparticules de silice". Toulouse 3, 2007. http://thesesups.ups-tlse.fr/176/.
Texto completoThis manuscript focuses on the development of a new family of inorganic luminescent nanoparticles. The originality of this work consists in the chemical functionalization of nanosized silica by luminescent transition metal complexes. We have chosen ruthenium(II) and europium(III) precursors for their interesting optic properties. If the first has broad but intense emission bands, the second is charaterized by a very sharp bands spectrum of lanthanides. We have undertaken the synthesis of organosilyldipyridine derivatives containing one alkoxysilane function. The two sites, bidentate ligand i. E. Dipyridyl group and a trialkoxysilane function, give an interesting silane for both complexing and grafting properties expected in this work. We report on a systematic investigation of the grafting reaction using commercial organosilanes and this general procedure was applied to our new bifunctional ligands, to ten Ru(II) and four Eu(III) complexes. Once grafted, the chemical integrity of the molecules was preserved together with the size and the morphology of silica nanoparticles. This work demonstrates that about one millimol of organosilane per gram of silica was well-distributed on the nanoparticles surface. Nanohybrids have expected luminescence properties, so we have shown that it will be possible to combine transition metal chemistry and nanoscale silicated material chemistry. Although the results are preliminary, work is now in progress to extensively study the luminescence properties of our nanomaterials. Also this grafting protocol may be now applied to various metallic complexes for other properties such as catalytic, optical, electrochemical or coordination
Reinhardt, Nora Maria Elisabeth. "Modification chimique de surface de nanoparticules de silice pour le marquage d'ADN dans des lipoplexes". Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14820/document.
Texto completoSilica nanoparticles are ideal platforms for the conception of bioimaging tools serving for the elucidation of the mechanisms of gene transfection via lipoplex structures. The purpose of the present study is the development of a chemical surface modification for the generation of quaternary ammonium groups on silica nanoparticles permitting the obtainment of highly positively charged silica colloids which strongly attract DNA by electrostatic interactions. Two modification strategies to generate quaternary ammonium groups on silica are presented a) a direct silanization using quaternary ammonium groups containing silane derivatives and b) a modification of silica nanoparticles via a first modification with an amine group containing silane derivative and a subsequent quaternization of the amine groups via an alkylation with iodomethane. Different physicochemical methods were employed (cosedimentation assays, quartz crystal microbalance with dissipation monitoring measurements, TEM and Cryo-TEM imaging) to analyze interactions between quaternized surfaces, DNA and lipids. A preliminary study was carried out which shows the capacity of the synthesized nanoparticles to label DNA in lipoplexes
Besson, Sophie Marie Catherine. "Films organisés de silice mésoporeuse : Synthèse, caractérisation structurale et utilisation pour la croissance de nanoparticules". Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2002EPXX0012.
Texto completoMauline, Léïla. "Élaboration de nanoparticules de silice bifonctionnelles : outils innovants pour l'exploration de biofilms à Pseudomonas aeruginosa". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1872/.
Texto completoBiofilms are micro-organisms community embedded within a self-produced matrix of extracellular polymeric substance (EPS). This matrix is often involved in increased resistance to chemical treatments (disinfectants, antimicrobials) making them difficult to eradicate. Frequently detrimental in industrial and medical domains, the problem of biofilms is a public health and economic issue. After the state of the art on methods conventionally used for the exploration of biofilms, there are few tools to study transport in situ in a living biofilms. From this perspective luminescent silica nanoparticles coupled with confocal microscopy would be a promising and innovative route. The aim of this work is to elaborate silica nanoparticles for biofilms exploration in order to understand physicochemical interactions with EPS and to study transport through biofilms. The first part describes the synthesis and the characterization of bifunctional silica nanoparticles owning luminescent properties and various surface properties. Ruthenium complexes were chosen for its interesting photo-physical features. Different sizes of particles were synthesized. Different surface properties (cationic, anionic, hydrophilic and hydrophobic) were brought with 6 organosilanes by grafting reaction. These nanomaterials were fully characterized. The second part presents Pseudomonas aeruginosa biofilms exploration with bifunctional silica nanoparticles. Firstly we evaluated cytotoxicity with respect to biofilms then we tuned introduction conditions of nanoparticles and their observation with confocal microscopy. During confocal microscopy visualization, we demonstrated that functionalized particles were able to penetrate inside biofilms. However size effect on penetration was highlighted, even if size difference isn't important. Particles localization depends on surface properties of nanoparticles
Tihay, Fanny. "Synthèse de nanoparticules magnétiques par décomposition de clusters bi-métalliques, en matrice se silice mésoporeuse". Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13158.
Texto completoWe have synthesized and characterized silica supported nanoparticles. The metallic precursors were tetrahedral carbonyl clusters of the type [CoxRu(4-x)(CO)12]n-, where x = 4 to 1, et n = 0 or 1. Two matrices have been employed : xérogels, where the pores are disordered and MCM-41, where the pores are arranged in an hexagonal array. The incorporation of the cluster to the matrices have been done by impregnation and by grafting. After thermal treatments, nanoparticles appear. They have been characterized by transmission electronic microscopy, X-Ray and electron diffraction, and by their magnetic properties. In every cases, the spatial distribution, and the size distribution of the particles are better into the organized matrix than in the xérogel. When the cluster is incorporated by impregnation, two populations of particles are observed : small ones, with a diameter equivalent to the pores' (2 nm), that do not grow with increasing temperatures of treatment, and bigger ones ( up to 50 nm) that grow on the defects of the matrices. We have shown that a segregation appears. At the beginning of the thermal treatment, pure Co and Ru nanoparticles appear, then there is interdiffusion of the metals to form alloys with the same stoichiometry than the initial cluster. When the cluster Co4(CO)10(æ-dppa) is grafted to the matrices by a modified alcoxyde, containing a phosphine group, 6 nm Co2P nanoparticles are obtained after a thermal treatment at 900 ʿC under H2. This intermetallic compound is obtained at much lower temperature than if the precursors are simply mixed