Artículos de revistas sobre el tema "Nanoparticule anisotrope"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nanoparticule anisotrope".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Capek, Ignác. "Noble Metal Nanoparticles and Their (Bio) Conjugates. II. Preparation". International Journal of Chemistry 8, n.º 1 (6 de enero de 2016): 86. http://dx.doi.org/10.5539/ijc.v8n1p86.
Texto completoKijima-Aoki, Hanae, Yasushi Endo, Takamichi Miyazaki, Tsutomu Nojima, Kenji Ikeda, Nobukiyo Kobayashi, Shigehiro Ohnuma y Hiroshi Masumoto. "Shape effect of Co nanoparticles on the electric and magnetic properties of Co–SiO2 nanogranular films". AIP Advances 12, n.º 3 (1 de marzo de 2022): 035229. http://dx.doi.org/10.1063/9.0000310.
Texto completoQuevedo, Daniel F., Cody J. Lentz, Adriana Coll de Peña, Yazmin Hernandez, Nahal Habibi, Rikako Miki, Joerg Lahann y Blanca H. Lapizco-Encinas. "Electrokinetic characterization of synthetic protein nanoparticles". Beilstein Journal of Nanotechnology 11 (13 de octubre de 2020): 1556–67. http://dx.doi.org/10.3762/bjnano.11.138.
Texto completoBelim, Sergey V. "Study of ordering in 2D ferromagnetic nanoparticles arrays: Computer simulation". AIMS Materials Science 10, n.º 6 (2023): 948–64. http://dx.doi.org/10.3934/matersci.2023051.
Texto completoBayram, Serene S., Klas Lindfors y Amy Szuchmacher Blum. "Tunable longitudinal modes in extended silver nanoparticle assemblies". Beilstein Journal of Nanotechnology 7 (26 de agosto de 2016): 1219–28. http://dx.doi.org/10.3762/bjnano.7.113.
Texto completoUsov, Nikolai A., Mikhail S. Nesmeyanov, Elizaveta M. Gubanova y Natalia B. Epshtein. "Heating ability of magnetic nanoparticles with cubic and combined anisotropy". Beilstein Journal of Nanotechnology 10 (29 de enero de 2019): 305–14. http://dx.doi.org/10.3762/bjnano.10.29.
Texto completoWang, Xujie, Zhenlong Dou, Chi Zhang, FangFang Deng, XiaoLin Lu, ShuangShuang Wang, Li Zhou y Tao Ding. "Polarization-controlled anisotropy in hybrid plasmonic nanoparticles". Nanophotonics 11, n.º 5 (27 de enero de 2022): 1003–9. http://dx.doi.org/10.1515/nanoph-2021-0691.
Texto completoKhan, I., C. Howell, T. L. McGinnity, L. Li, R. K. Roeder y A. J. Hoffman. "Effects of anisotropy, morphology, and interparticle coupling on the far-infrared optical modes of randomly oriented ZnO nanoparticles". Applied Physics Letters 122, n.º 4 (23 de enero de 2023): 041104. http://dx.doi.org/10.1063/5.0128493.
Texto completoOsipov, Mikhail A., Alexey S. Merekalov y Alexander A. Ezhov. "Statistical Theory of Helical Twisting in Nematic Liquid Crystals Doped with Chiral Nanoparticles". Crystals 11, n.º 11 (22 de noviembre de 2021): 1432. http://dx.doi.org/10.3390/cryst11111432.
Texto completoAfremov, Leonid L., Tatyana N. Gnitetskaya y Elena B. Ivanova. "On the Calculation of Effective Anisotropy Constant of Nanoparticle". Advanced Materials Research 734-737 (agosto de 2013): 2310–13. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2310.
Texto completoБезверхний, А. И., А. Д. Таланцев, Ю. Е. Калинин, А. В. Ситников, В. A. Никитенко, О. В. Коплак, О. С. Дмитриев y Р. Б. Моргунов. "Магнитная анизотропия многослойных гетероструктур [(Co-=SUB=-41-=/SUB=-Fe-=SUB=-39-=/SUB=-B-=SUB=-20-=/SUB=-)-=SUB=-x-=/SUB=-(SiO-=SUB=-2-=/SUB=-)-=SUB=-100-x-=/SUB=-/Bi-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-]-=SUB=-47-=/SUB=-". Физика твердого тела 61, n.º 2 (2019): 266. http://dx.doi.org/10.21883/ftt.2019.02.47124.235.
Texto completoGouget, Guillaume, Patricia Beaunier, David Portehault y Clément Sanchez. "New route toward nanosized crystalline metal borides with tuneable stoichiometry and variable morphologies". Faraday Discussions 191 (2016): 511–25. http://dx.doi.org/10.1039/c6fd00053c.
Texto completoWang, Chungang, Ying Chen, Zhanfang Ma, Tingting Wang y Zhongmin Su. "Generalized Fabrication of Surfactant-Stabilized Anisotropic Metal Nanoparticles to Amino-Functionalized Surfaces: Application to Surface-Enhanced Raman Spectroscopy". Journal of Nanoscience and Nanotechnology 8, n.º 11 (1 de noviembre de 2008): 5887–95. http://dx.doi.org/10.1166/jnn.2008.222.
Texto completoWrigglesworth, E. G. y J. H. Johnston. "The use of dual reductants in gold nanoparticle syntheses". RSC Adv. 7, n.º 72 (2017): 45757–62. http://dx.doi.org/10.1039/c7ra07724f.
Texto completoNguyen, Luu, Pham Phong, Pham Nam, Do Manh, Nguyen Thanh, Le Tung y Nguyen Phuc. "The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications". Materials 14, n.º 8 (9 de abril de 2021): 1875. http://dx.doi.org/10.3390/ma14081875.
Texto completoShaikh, Mubeena. "Effect of the Strength of Attraction Between Nanoparticles on Wormlike Micelle- Nanoparticle System". Condensed Matter 3, n.º 4 (13 de octubre de 2018): 31. http://dx.doi.org/10.3390/condmat3040031.
Texto completoOsipov, Mikhail A., Alexey S. Merekalov y Alexander A. Ezhov. "Molecular-Theory of High Frequency Dielectric Susceptibility of Nematic Nanocomposites". Crystals 10, n.º 11 (26 de octubre de 2020): 970. http://dx.doi.org/10.3390/cryst10110970.
Texto completoSaigusa, Masanari, Kazuma Tsuboi, Yuichi Konosu, Minoru Ashizawa, Akihiko Tanioka y Hidetoshi Matsumoto. "Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers". Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/829273.
Texto completoChandra, Grish, R. C. Srivastava y V. R. Reddy. "Modification in Magnetic Properties of CoFe2O4 Ferrite Nanoparticles Induced by 100MeV O+7 Ion Irradiation". IOP Conference Series: Materials Science and Engineering 1291, n.º 1 (1 de septiembre de 2023): 012011. http://dx.doi.org/10.1088/1757-899x/1291/1/012011.
Texto completoZaluzhnyy, Ivan, Ruslan Kurta, Marcus Scheele, Frank Schreiber, Boris Ostrovskii y Ivan Vartanyants. "Angular X-ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials". Materials 12, n.º 21 (23 de octubre de 2019): 3464. http://dx.doi.org/10.3390/ma12213464.
Texto completoSu, K. P., Zhong Wu Liu, X. X. Shan, Z. G. Zheng, X. C. Zhong, Hong Ya Yu y De Chang Zeng. "Synthesis and Characterization of Core-Shell Structured Bimagnetic Cobalt-Coated Iron Nanoparticles". Materials Science Forum 688 (junio de 2011): 370–75. http://dx.doi.org/10.4028/www.scientific.net/msf.688.370.
Texto completoSekar, S., V. Lemaire, H. Hu, G. Decher y M. Pauly. "Anisotropic optical and conductive properties of oriented 1D-nanoparticle thin films made by spray-assisted self-assembly". Faraday Discussions 191 (2016): 373–89. http://dx.doi.org/10.1039/c6fd00017g.
Texto completoSelvakumaran, Lakshmi y Gilles Lubineau. "Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy". Applied Mechanics and Materials 784 (agosto de 2015): 435–42. http://dx.doi.org/10.4028/www.scientific.net/amm.784.435.
Texto completoPundir, Sudhir Kumar, Mukesh Kumar Awasthi y Vivek Kumar. "Soret Driven Instability in an Anisotropic Porous Layer Saturated by a Darcy-Maxwell Nanofluid". Journal of Nanofluids 11, n.º 5 (1 de agosto de 2022): 795–802. http://dx.doi.org/10.1166/jon.2022.1874.
Texto completoThanh Nguyen, Hoang y Tuan Manh Nguyen. "Investigation of Magnetic Properties of Magnetic Poly (glycidyl methacrylate) Microspheres: Experimental and Theoretical". Advances in Materials Science and Engineering 2021 (24 de junio de 2021): 1–10. http://dx.doi.org/10.1155/2021/6676453.
Texto completoAndrade, Priscyla L., Valdeene A. J. Silva, Kathryn L. Krycka, Juscelino B. Leão, I.-Lin Liu, Maria P. C. Silva y J. Albino Aguiar. "The effect of organic coatings in the magnetization of CoFe2O4 nanoparticles". AIP Advances 12, n.º 8 (1 de agosto de 2022): 085102. http://dx.doi.org/10.1063/5.0078167.
Texto completoSrinath, S., P. Poddar, Deepti S. Sidhaye, B. L. V. Prasad, J. Gass y H. Srikanth. "Static and Dynamic Magnetic Properties of Co Nanoparticles". Journal of Nanoscience and Nanotechnology 8, n.º 8 (1 de agosto de 2008): 4086–91. http://dx.doi.org/10.1166/jnn.2008.an06.
Texto completoKúdelčík, Jozef, Peter Bury, Štefan Hardoň, Peter Kopčanský y Milan Timko. "Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field". Journal of Electrical Engineering 66, n.º 4 (1 de julio de 2015): 231–34. http://dx.doi.org/10.2478/jee-2015-0037.
Texto completoFAZELZADEH, S. AHMAD y ESMAEAL GHAVANLOO. "RADIAL VIBRATION CHARACTERISTICS OF SPHERICAL NANOPARTICLES IMMERSED IN FLUID MEDIUM". Modern Physics Letters B 27, n.º 26 (10 de octubre de 2013): 1350186. http://dx.doi.org/10.1142/s0217984913501868.
Texto completoLaramy, Christine R., Lam-Kiu Fong, Matthew R. Jones, Matthew N. O'Brien, George C. Schatz y Chad A. Mirkin. "Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles". Chemical Physics Letters 683 (septiembre de 2017): 389–92. http://dx.doi.org/10.1016/j.cplett.2017.01.050.
Texto completoOsipov, Mikhail A., Alexey S. Merekalov y Alexander A. Ezhov. "Effect of Rod-like Nanoparticles on the Dielectric Susceptibility of Nematic Nano-Composites: A Molecular Theory". Crystals 12, n.º 12 (15 de diciembre de 2022): 1827. http://dx.doi.org/10.3390/cryst12121827.
Texto completoKrylova, Karina A., Liliya R. Safina, Ramil T. Murzaev, Julia A. Baimova y Radik R. Mulyukov. "Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites". Materials 14, n.º 11 (4 de junio de 2021): 3087. http://dx.doi.org/10.3390/ma14113087.
Texto completoIzzati Khalidah Khalid, Nor Fadzillah Mohd Mokhtar y Nurul Hafizah Zainal Abidin. "Thermogravitational Convection in a Controlled Rotating Darcy-Brinkman Nanofluids Layer Saturated in an Anisotropic Porous Medium Subjected to Internal Heat Source". Journal of Advanced Research in Numerical Heat Transfer 14, n.º 1 (11 de octubre de 2023): 70–90. http://dx.doi.org/10.37934/arnht.14.1.7090.
Texto completoGilbert, Benjamin. "Finite size effects on the real-space pair distribution function of nanoparticles". Journal of Applied Crystallography 41, n.º 3 (7 de mayo de 2008): 554–62. http://dx.doi.org/10.1107/s0021889808007905.
Texto completoSoleimani, Hojjatollah, Surajudden Sikiru, Hassan Soleimani, Leila Khodapanah y Maziyar Sabet. "Impact of Anisotropy and Electromagnetic Modified Effect on Fluid Mobility in Reservoir Sandstone". Defect and Diffusion Forum 429 (12 de diciembre de 2023): 179–88. http://dx.doi.org/10.4028/p-wmzwk3.
Texto completoAmirabadizadeh, Ahmad, Amir Zelati y Zahra Lotfollahi. "Studying the Temperature Effect on the Magnetic Behavior of Fe3O4 Water Based Ferrofluid". Key Engineering Materials 744 (julio de 2017): 468–72. http://dx.doi.org/10.4028/www.scientific.net/kem.744.468.
Texto completoChen, Sen, Juncheng E y Sheng-Nian Luo. "SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems". Journal of Applied Crystallography 50, n.º 3 (13 de abril de 2017): 951–58. http://dx.doi.org/10.1107/s1600576717004162.
Texto completoTan, Michael y Mary Donnabelle Balela. "One-Pot Synthesis of High Aspect Ratio Copper Nanowires in Aqueous Solution". Advanced Materials Research 1119 (julio de 2015): 34–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.34.
Texto completoTolea, Felicia, Monica Sorescu, Lucian Diamandescu, Nicusor Iacob, Mugurel Tolea y Victor Kuncser. "Unidirectional Magnetic Anisotropy in Molybdenum Dioxide–Hematite Mixed-Oxide Nanostructures". Nanomaterials 12, n.º 6 (12 de marzo de 2022): 938. http://dx.doi.org/10.3390/nano12060938.
Texto completoZhou, Wenjie, Zizhuo Liu, Ziyin Huang, Haixin Lin, Devleena Samanta, Qing-Yuan Lin, Koray Aydin y Chad A. Mirkin. "Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly". Proceedings of the National Academy of Sciences 117, n.º 35 (17 de agosto de 2020): 21052–57. http://dx.doi.org/10.1073/pnas.2006797117.
Texto completoScarabelli, Leonardo. "Recent advances in the rational synthesis and self-assembly of anisotropic plasmonic nanoparticles". Pure and Applied Chemistry 90, n.º 9 (25 de septiembre de 2018): 1393–407. http://dx.doi.org/10.1515/pac-2018-0510.
Texto completoYannopapas, Vassilios y Emmanuel Paspalakis. "Anisotropic Purcell Effect and Quantum Interference in Fractal Aggregates of Nanoparticles". Photonics 10, n.º 8 (3 de agosto de 2023): 898. http://dx.doi.org/10.3390/photonics10080898.
Texto completoBear, Joseph C., Bin Yu, Cristina Blanco-Andujar, Paul D. McNaughter, Paul Southern, Marc-Krystelle Mafina, Quentin A. Pankhurst y Ivan P. Parkin. "A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials". Faraday Discuss. 175 (2014): 83–95. http://dx.doi.org/10.1039/c4fd00062e.
Texto completoDalakova, N. V. "Spin-dependent transport in compacted powders of chromic dioxide CrO2 with anisotropy of nanoparticle shapes". Functional materials 22, n.º 4 (15 de diciembre de 2015): 455–60. http://dx.doi.org/10.15407/fm22.04.455.
Texto completoLondoño Navarro, Juanita, Juan Carlos Riaño-Rojas y Elisabeth Restrepo-Parra. "Competition between anisotropy and dipolar interaction in multicore nanoparticles: Monte Carlo simulation". DYNA 82, n.º 194 (21 de diciembre de 2015): 66–71. http://dx.doi.org/10.15446/dyna.v82n194.44297.
Texto completoShytyi. A.M., Vasilevskaya T. M. y Sementsov D. I. "Resonant dynamics of the magnetization of uniaxial nanoparticle". Physics of the Solid State 64, n.º 6 (2022): 635. http://dx.doi.org/10.21883/pss.2022.06.53825.279.
Texto completoHabibi, Nahal, Ava Mauser, Jeffery E. Raymond y Joerg Lahann. "Systematic studies into uniform synthetic protein nanoparticles". Beilstein Journal of Nanotechnology 13 (28 de febrero de 2022): 274–83. http://dx.doi.org/10.3762/bjnano.13.22.
Texto completoKöseoglu, Yüksel y Hüseyin Kavas. "Size and Surface Effects on Magnetic Properties of Fe3O4 Nanoparticles". Journal of Nanoscience and Nanotechnology 8, n.º 2 (1 de febrero de 2008): 584–90. http://dx.doi.org/10.1166/jnn.2008.b012.
Texto completoOmelyanchik, Alexander, María Salvador, Franco D’Orazio, Valentina Mameli, Carla Cannas, Dino Fiorani, Anna Musinu et al. "Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles". Nanomaterials 10, n.º 7 (30 de junio de 2020): 1288. http://dx.doi.org/10.3390/nano10071288.
Texto completoKokorina, E. E. y M. V. Medvedev. "Anisotropic superparamagnetic states of an isolated ferromagnetic nanoparticle with uniaxial single-ion anisotropy". physica status solidi (c) 3, n.º 5 (mayo de 2006): 1291–94. http://dx.doi.org/10.1002/pssc.200563112.
Texto completo