Artículos de revistas sobre el tema "Nanoparticle Superlattices"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Nanoparticle Superlattices.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nanoparticle Superlattices".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Ross, Michael B., Jessie C. Ku, Martin G. Blaber, Chad A. Mirkin y George C. Schatz. "Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices". Proceedings of the National Academy of Sciences 112, n.º 33 (3 de agosto de 2015): 10292–97. http://dx.doi.org/10.1073/pnas.1513058112.

Texto completo
Resumen
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Jiaming, Rongjuan Liu, Zhijie Yang y Jingjing Wei. "Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly". Chemical Communications 58, n.º 23 (2022): 3819–22. http://dx.doi.org/10.1039/d2cc00330a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Prasad, B. L. V., C. M. Sorensen y Kenneth J. Klabunde. "Gold nanoparticle superlattices". Chemical Society Reviews 37, n.º 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Radha, Boya, Andrew J. Senesi, Matthew N. O’Brien, Mary X. Wang, Evelyn Auyeung, Byeongdu Lee y Chad A. Mirkin. "Reconstitutable Nanoparticle Superlattices". Nano Letters 14, n.º 4 (18 de marzo de 2014): 2162–67. http://dx.doi.org/10.1021/nl500473t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Park, Daniel J., Jessie C. Ku, Lin Sun, Clotilde M. Lethiec, Nathaniel P. Stern, George C. Schatz y Chad A. Mirkin. "Directional emission from dye-functionalized plasmonic DNA superlattice microcavities". Proceedings of the National Academy of Sciences 114, n.º 3 (4 de enero de 2017): 457–61. http://dx.doi.org/10.1073/pnas.1619802114.

Texto completo
Resumen
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Кособукин, В. А. "Спектроскопия плазмон-экситонов в наноструктурах полупроводник-металл". Физика твердого тела 60, n.º 8 (2018): 1606. http://dx.doi.org/10.21883/ftt.2018.08.46256.18gr.

Texto completo
Resumen
AbstractThe results of the theory considering mixed plasmon-excitonic modes and their spectroscopy are presented. The plasmon-excitons are formed owing to strong Coulomb coupling between quasi-two-dimensional excitons of a quantum well and dipole plasmons of nanoparticles. The effective polarizability associated with a nanoparticle is calculated in a self-consistent approximation taking into account the local field determined by in-layer dipole plasmons and their image charges due to the excitonic polarization of a near quantum well. The spectra of elastic scattering and specular reflection of light are investigated in cases of a single silver nanoparticle and a monolayer of such particles situated in close proximity to a quantum well GaAs/AlGaAs. The optical spectra show a two-peak structure with a deep and narrow dip in the resonant range of plasmon-excitons. Propagation of plasmon-excitonic polaritons is discussed for periodic superlattices whose unit cell consists of a quantum well and a layer of metal nanoparticles. The superradiance regime originating in the Bragg diffraction of plasmon-excitonic polaritons by the superlattice is investigated. It is shown that the broad spectrum of plasmonic reflection depending on the number of unit cells in a superlattice also has a narrow dip at the exciton frequency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Podsiadlo, Paul, Galyna V. Krylova, Arnaud Demortière y Elena V. Shevchenko. "Multicomponent periodic nanoparticle superlattices". Journal of Nanoparticle Research 13, n.º 1 (31 de diciembre de 2010): 15–32. http://dx.doi.org/10.1007/s11051-010-0174-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Nishida, Naoki, Edakkattuparambil S. Shibu, Hiroshi Yao, Tsugao Oonishi, Keisaku Kimura y Thalappil Pradeep. "Fluorescent Gold Nanoparticle Superlattices". Advanced Materials 20, n.º 24 (16 de diciembre de 2008): 4719–23. http://dx.doi.org/10.1002/adma.200800632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shevchenko, E. V., J. Kortright, D. V. Talapin, S. Aloni y A. P. Alivisatos. "Quasi-ternary Nanoparticle Superlattices Through Nanoparticle Design". Advanced Materials 19, n.º 23 (3 de diciembre de 2007): 4183–88. http://dx.doi.org/10.1002/adma.200701470.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ouyang, Tianhao, Arash Akbari-Sharbaf, Jaewoo Park, Reg Bauld, Michael G. Cottam y Giovanni Fanchini. "Self-assembled metallic nanoparticle superlattices on large-area graphene thin films: growth and evanescent waveguiding properties". RSC Advances 5, n.º 120 (2015): 98814–21. http://dx.doi.org/10.1039/c5ra22052a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Mehdizadeh Taheri, Sara, Steffen Fischer y Stephan Förster. "Routes to Nanoparticle-Polymer Superlattices". Polymers 3, n.º 2 (24 de marzo de 2011): 662–73. http://dx.doi.org/10.3390/polym3020662.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kostiainen, Mauri A. "Protein cage directed nanoparticle superlattices". Acta Crystallographica Section A Foundations and Advances 77, a2 (14 de agosto de 2021): C339. http://dx.doi.org/10.1107/s0108767321093466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Macfarlane, R. J., M. R. Jones, B. Lee, E. Auyeung y C. A. Mirkin. "Topotactic Interconversion of Nanoparticle Superlattices". Science 341, n.º 6151 (22 de agosto de 2013): 1222–25. http://dx.doi.org/10.1126/science.1241402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Liu, W., M. Tagawa, H. L. Xin, T. Wang, H. Emamy, H. Li, K. G. Yager, F. W. Starr, A. V. Tkachenko y O. Gang. "Diamond family of nanoparticle superlattices". Science 351, n.º 6273 (4 de febrero de 2016): 582–86. http://dx.doi.org/10.1126/science.aad2080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Honghu, Wenjie Wang, Surya Mallapragada, Alex Travesset y David Vaknin. "Macroscopic and tunable nanoparticle superlattices". Nanoscale 9, n.º 1 (2017): 164–71. http://dx.doi.org/10.1039/c6nr07136h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Faisal, Rina Muhammad. "Langmuir‐Blodgett Assembly to order Nanoparticles and Colloidal Objects". British Journal of Multidisciplinary and Advanced Studies 3, n.º 2 (4 de noviembre de 2022): 1–5. http://dx.doi.org/10.37745/bjmas.2022.0034.

Texto completo
Resumen
Bottom-up assembly of nanoparticles and colloidal objects pose a formidable challenge when processing devices. Speed, compatibility with various materials, defect tolerance and cost effectiveness are among the desired properties of a suitable nanoscale assembly process. In this regard, the Langmuir‐Blodgett (LB) technique is a highly sought-after candidate which aids in arranging a large number of nanostructures on solid surfaces. This mini-review aims to provide a concise account on the LB technique and four distinct ways of how it allows to assemble systems made of nanoparticles and colloidal objects: namely, close-packed nanoparticle superlattices by compression, micrometer scale nanoparticle fingering patterns by dip coating, single nanoparticle lines by stick-slip deposition and one-step patterning of aligned nanowire arrays.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Mao, Runfang, Evan Pretti y Jeetain Mittal. "Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices". ACS Nano 15, n.º 5 (3 de mayo de 2021): 8466–73. http://dx.doi.org/10.1021/acsnano.0c10874.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Santos, Peter J., Paul A. Gabrys, Leonardo Z. Zornberg, Margaret S. Lee y Robert J. Macfarlane. "Macroscopic materials assembled from nanoparticle superlattices". Nature 591, n.º 7851 (24 de marzo de 2021): 586–91. http://dx.doi.org/10.1038/s41586-021-03355-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Qi, Limin. "Nonclassical crystallization pathways of nanoparticle superlattices". Chinese Science Bulletin 65, n.º 5 (1 de febrero de 2020): 329–30. http://dx.doi.org/10.1360/tb-2019-0789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Carvajal, Joan J. "Quasicrystalline Order Revealed in Nanoparticle Superlattices". MRS Bulletin 34, n.º 12 (diciembre de 2009): 892. http://dx.doi.org/10.1557/mrs2009.203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Shevchenko, Elena V., Dmitri V. Talapin, Nicholas A. Kotov, Stephen O'Brien y Christopher B. Murray. "Structural diversity in binary nanoparticle superlattices". Nature 439, n.º 7072 (enero de 2006): 55–59. http://dx.doi.org/10.1038/nature04414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Talapin, Dmitri V., Elena V. Shevchenko, Christopher B. Murray, Alexey V. Titov y Petr Král. "Dipole−Dipole Interactions in Nanoparticle Superlattices". Nano Letters 7, n.º 5 (mayo de 2007): 1213–19. http://dx.doi.org/10.1021/nl070058c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Rigby, Pauline. "New building blocks for nanoparticle superlattices". Materials Today 11, n.º 1-2 (enero de 2008): 13. http://dx.doi.org/10.1016/s1369-7021(07)70343-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sealy, Cordelia. "Nanoparticle superlattices shape-up under pressure". Materials Today 11, n.º 11 (noviembre de 2008): 15. http://dx.doi.org/10.1016/s1369-7021(08)70233-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Mazid, Romiza R., Kae Jye Si y Wenlong Cheng. "DNA based strategy to nanoparticle superlattices". Methods 67, n.º 2 (mayo de 2014): 215–26. http://dx.doi.org/10.1016/j.ymeth.2014.01.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kahn, Jason S., Brian Minevich y Oleg Gang. "Three-dimensional DNA-programmable nanoparticle superlattices". Current Opinion in Biotechnology 63 (junio de 2020): 142–50. http://dx.doi.org/10.1016/j.copbio.2019.12.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Olichwer, Natalia, Andreas Meyer, Mazlum Yesilmen y Tobias Vossmeyer. "Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling". Journal of Materials Chemistry C 4, n.º 35 (2016): 8214–25. http://dx.doi.org/10.1039/c6tc02412b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Julin, Sofia, Antti Korpi, Nonappa Nonappa, Boxuan Shen, Ville Liljeström, Olli Ikkala, Adrian Keller, Veikko Linko y Mauri A. Kostiainen. "DNA origami directed 3D nanoparticle superlattice via electrostatic assembly". Nanoscale 11, n.º 10 (2019): 4546–51. http://dx.doi.org/10.1039/c8nr09844a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Lin, Qing-Yuan, Jarad A. Mason, Zhongyang Li, Wenjie Zhou, Matthew N. O’Brien, Keith A. Brown, Matthew R. Jones et al. "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly". Science 359, n.º 6376 (18 de enero de 2018): 669–72. http://dx.doi.org/10.1126/science.aaq0591.

Texto completo
Resumen
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Olichwer, Natalia, Tönjes Koschine, Andreas Meyer, Werner Egger, Klaus Rätzke y Tobias Vossmeyer. "Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS". RSC Advances 6, n.º 114 (2016): 113163–72. http://dx.doi.org/10.1039/c6ra24241c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Sun, Lin, Haixin Lin, Kevin L. Kohlstedt, George C. Schatz y Chad A. Mirkin. "Design principles for photonic crystals based on plasmonic nanoparticle superlattices". Proceedings of the National Academy of Sciences 115, n.º 28 (25 de junio de 2018): 7242–47. http://dx.doi.org/10.1073/pnas.1800106115.

Texto completo
Resumen
Photonic crystals have been widely studied due to their broad technological applications in lasers, sensors, optical telecommunications, and display devices. Typically, photonic crystals are periodic structures of touching dielectric materials with alternating high and low refractive indices, and to date, the variables of interest have focused primarily on crystal symmetry and the refractive indices of the constituent materials, primarily polymers and semiconductors. In contrast, finite difference time domain (FDTD) simulations suggest that plasmonic nanoparticle superlattices with spacer groups offer an alternative route to photonic crystals due to the controllable spacing of the nanoparticles and the high refractive index of the lattices, even far away from the plasmon frequency where losses are low. Herein, the stopband features of 13 Bravais lattices are characterized and compared, resulting in paradigm-shifting design principles for photonic crystals. Based on these design rules, a simple cubic structure with an ∼130-nm lattice parameter is predicted to have a broad photonic stopband, a property confirmed by synthesizing the structure via DNA programmable assembly and characterizing it by reflectance measurements. We show through simulation that a maximum reflectance of more than 0.99 can be achieved in these plasmonic photonic crystals by optimizing the nanoparticle composition and structural parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zhang, Fenghua, Jingjing Wei y Zhijie Yang. "Nanoparticle superlattices enabled by soft epitaxial strategy". SCIENTIA SINICA Chimica 51, n.º 6 (19 de mayo de 2021): 751–60. http://dx.doi.org/10.1360/ssc-2021-0014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Cheng, Ho Fung, Max E. Distler, Byeongdu Lee, Wenjie Zhou, Steven Weigand y Chad A. Mirkin. "Nanoparticle Superlattices through Template-Encoded DNA Dendrimers". Journal of the American Chemical Society 143, n.º 41 (11 de octubre de 2021): 17170–79. http://dx.doi.org/10.1021/jacs.1c07858.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Lewis, Diana J., Leonardo Z. Zornberg, David J. D. Carter y Robert J. Macfarlane. "Single-crystal Winterbottom constructions of nanoparticle superlattices". Nature Materials 19, n.º 7 (16 de marzo de 2020): 719–24. http://dx.doi.org/10.1038/s41563-020-0643-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Li, Jun, Yiliguma Yiliguma, Yifei Wang y Gengfeng Zheng. "Carbon-coated nanoparticle superlattices for energy applications". Nanoscale 8, n.º 30 (2016): 14359–68. http://dx.doi.org/10.1039/c6nr03243e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Labastide, Joelle A., Mina Baghgar, Irene Dujovne, Yipeng Yang, Anthony D. Dinsmore, Bobby G. Sumpter, Dhandapani Venkataraman y Michael D. Barnes. "Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications". Journal of Physical Chemistry Letters 2, n.º 24 (30 de noviembre de 2011): 3085–91. http://dx.doi.org/10.1021/jz2012275.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Li, Wenbin, Hongyou Fan y Ju Li. "Deviatoric Stress-Driven Fusion of Nanoparticle Superlattices". Nano Letters 14, n.º 9 (7 de agosto de 2014): 4951–58. http://dx.doi.org/10.1021/nl5011977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

wu, J., G. Liu, E. Auyeung, J. Cutler, R. Macfarlane, M. Jones, K. Zhang, K. Osberg, C. Mirkin y V. Dravid. "Electron tomography of DNA-linked nanoparticle superlattices". Microscopy and Microanalysis 18, S2 (julio de 2012): 1646–47. http://dx.doi.org/10.1017/s1431927612010082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Travesset, A. "Topological structure prediction in binary nanoparticle superlattices". Soft Matter 13, n.º 1 (2017): 147–57. http://dx.doi.org/10.1039/c6sm00713a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kurelchuk, U. N., P. V. Borisyuk y O. S. Vasilyev. "Electron properties of 13-atom nanoparticle superlattices". Materials Letters 262 (marzo de 2020): 127100. http://dx.doi.org/10.1016/j.matlet.2019.127100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Zornberg, Leonardo Z., Paul A. Gabrys y Robert J. Macfarlane. "Optical Processing of DNA-Programmed Nanoparticle Superlattices". Nano Letters 19, n.º 11 (11 de octubre de 2019): 8074–81. http://dx.doi.org/10.1021/acs.nanolett.9b03258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Travesset, Alex. "Binary nanoparticle superlattices of soft-particle systems". Proceedings of the National Academy of Sciences 112, n.º 31 (20 de julio de 2015): 9563–67. http://dx.doi.org/10.1073/pnas.1504677112.

Texto completo
Resumen
The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. Particular emphasis is given to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee y Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices". Angewandte Chemie 125, n.º 26 (16 de mayo de 2013): 6756–60. http://dx.doi.org/10.1002/ange.201301936.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Si, Kae Jye, Yi Chen, Qianqian Shi y Wenlong Cheng. "Nanoparticle Superlattices: The Roles of Soft Ligands". Advanced Science 5, n.º 1 (6 de septiembre de 2017): 1700179. http://dx.doi.org/10.1002/advs.201700179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Santiago, P., H. E. Troiani, C. Gutierrez-Wing, J. Ascencio y M. J. Yacaman. "Structure and Properties of Au Nanoparticle Superlattices". physica status solidi (b) 230, n.º 2 (abril de 2002): 363–70. http://dx.doi.org/10.1002/1521-3951(200204)230:2<363::aid-pssb363>3.0.co;2-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee y Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices". Angewandte Chemie International Edition 52, n.º 26 (16 de mayo de 2013): 6624–28. http://dx.doi.org/10.1002/anie.201301936.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Patra, Tarak K., Henry Chan, Paul Podsiadlo, Elena V. Shevchenko, Subramanian K. R. S. Sankaranarayanan y Badri Narayanan. "Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices". Nanoscale 11, n.º 22 (2019): 10655–66. http://dx.doi.org/10.1039/c8nr09699f.

Texto completo
Resumen
Coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments illustrate that coverage density of capping ligands provides a route to engineer nanoparticle superlattices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Mayence, Arnaud, Dong Wang, German Salazar-Alvarez, Peter Oleynikov y Lennart Bergström. "Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging". Nanoscale 6, n.º 22 (2014): 13803–8. http://dx.doi.org/10.1039/c4nr04156a.

Texto completo
Resumen
Planar defects in Pd nanoparticle superlattices were revealed by a combination of real and reciprocal space transmission electron microscopy techniques. 3D electron diffraction tomography was extended to characterize mesoscale imperfections.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Li, Meng, Yuanzhi Chen, Na Ji, Deqian Zeng y Dong-Liang Peng. "Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices". Materials Chemistry and Physics 147, n.º 3 (octubre de 2014): 604–10. http://dx.doi.org/10.1016/j.matchemphys.2014.05.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ji, Na, Yuanzhi Chen, Pingyun Gong, Keyan Cao y Dong-Liang Peng. "Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices". Colloids and Surfaces A: Physicochemical and Engineering Aspects 480 (septiembre de 2015): 11–18. http://dx.doi.org/10.1016/j.colsurfa.2015.03.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía