Literatura académica sobre el tema "Nanoparticle biogenesis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanoparticle biogenesis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nanoparticle biogenesis"
Hurwitz, Stephanie N., Meghan M. Conlon, Mark A. Rider, Naomi C. Brownstein y David G. Meckes. "Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis". Journal of Extracellular Vesicles 5, n.º 1 (enero de 2016): 31295. http://dx.doi.org/10.3402/jev.v5.31295.
Texto completoKodiha, Mohamed, Hicham Mahboubi, Dusica Maysinger y Ursula Stochaj. "Gold Nanoparticles Impinge on Nucleoli and the Stress Response in MCF7 Breast Cancer Cells". Nanobiomedicine 3 (1 de enero de 2016): 3. http://dx.doi.org/10.5772/62337.
Texto completoRoychoudhury, Piya, Aleksandra Golubeva, Przemysław Dąbek, Michał Gloc, Renata Dobrucka, Krzysztof Kurzydłowski y Andrzej Witkowski. "Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid". Materials 14, n.º 23 (28 de noviembre de 2021): 7284. http://dx.doi.org/10.3390/ma14237284.
Texto completoMurray, Matthew, Yazhe Wang, Ranjini K. Sundaram, Jason Beckta, W. Mark Saltzman y Ranjit S. Bindra. "Abstract 294: Exploiting mutant PPM1D-induced metabolic defects with nanoparticle-encapsulated NAMPT inhibitors". Cancer Research 82, n.º 12_Supplement (15 de junio de 2022): 294. http://dx.doi.org/10.1158/1538-7445.am2022-294.
Texto completoSancho-Albero, María, Maria del Mar Encabo-Berzosa, Manuel Beltrán-Visiedo, Lola Fernández-Messina, Víctor Sebastián, Francisco Sánchez-Madrid, Manuel Arruebo, Jesús Santamaría y Pilar Martín-Duque. "Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids". Nanoscale 11, n.º 40 (2019): 18825–36. http://dx.doi.org/10.1039/c9nr06183e.
Texto completoArasi, Maria Beatrice, Francesca Pedini, Sonia Valentini, Nadia Felli y Federica Felicetti. "Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis". Cancers 12, n.º 10 (9 de octubre de 2020): 2893. http://dx.doi.org/10.3390/cancers12102893.
Texto completoBabu, B. Hari y G. Vijaya Lakshmi. "Antibacterial, Anticancer, Catalytic and Antioxidant Activities of Green Synthesized Silver Nanoparticles Derived from Alternanthera sessilis Leaf Extract". Asian Journal of Chemistry 34, n.º 12 (2022): 3286–92. http://dx.doi.org/10.14233/ajchem.2022.23980.
Texto completoShaw, S., P. Singh, R. Mishra, R. Singh, R. Nayak y S. Bose. "Cancer therapeutics strategy using nano-carrier mediated natural drugs". Journal of Achievements in Materials and Manufacturing Engineering 114, n.º 1 (1 de septiembre de 2022): 32–41. http://dx.doi.org/10.5604/01.3001.0016.1481.
Texto completoHuang, Di, Naagarajan Narayanan, Mario A. Cano-Vega, Zhihao Jia, Kolapo M. Ajuwon, Shihuan Kuang y Meng Deng. "Nanoparticle-Mediated Inhibition of Notch Signaling Promotes Mitochondrial Biogenesis and Reduces Subcutaneous Adipose Tissue Expansion in Pigs". iScience 23, n.º 6 (junio de 2020): 101167. http://dx.doi.org/10.1016/j.isci.2020.101167.
Texto completoKumar, Sanjay, Brennetta J. Crenshaw, Sparkle D. Williams, Courtnee’ R. Bell, Qiana L. Matthews y Brian Sims. "Cocaine‐Specific Effects on Exosome Biogenesis in Microglial Cells". Neurochemical Research 46, n.º 4 (8 de febrero de 2021): 1006–18. http://dx.doi.org/10.1007/s11064-021-03231-2.
Texto completoTesis sobre el tema "Nanoparticle biogenesis"
Ho, Nicholas Ryan. "Controlling gold nanoparticle biogenesis in the bacterium enterobacter sp. Pb204". Thesis, 2018. https://hdl.handle.net/10539/26698.
Texto completoResearch into the synthesis of gold nanoparticles (AuNPs) has increased in the past few decades due to their wide range of potential applications, with increased emphasis placed on the greener synthesis of AuNPs. A promising method of synthesis is bacterial synthesis but one of the largest obstacles faced by this method is the large variability in the shape and size of AuNPs. To this end, the aim of this study was to improve the uniformity of AuNPs synthesised by a bacterium isolated from acid mine decant on the West Rand of Gauteng, South Africa, (26°06'26.8"S 27°43'20.2"E) (Enterobacter sp. Pb204) through alteration of reaction parameters as well as the determination of possible genetic pathways responsible for AuNP synthesis. The following reaction parameters: growth media, biocatalyst ratio, temperature, pH and gold ion concentration were altered to determine their influence on AuNP synthesis by Enterobacter sp. Pb204. The AuNPs were analysed using ultravioletvisible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Following the optimisation of AuNP biogenesis in Enterobacter sp. Pb204, the whole genome of the bacterium was sequenced using the Illumina Hiseq (2500, California, USA). To produce uniformed spherical AuNPs, within a size range of 2 to 15 nm, the following parameters were identified: cell biocatalyst grown LB at a pH of 3, incubated at 37 °C with a chloroauric acid concentration of 1 mM for 24 hours. The whole genome analysis of Enterobacter sp. Pb204 revealed that it is a unique strain of Enterobacter xiangfangensis LMG 27195T and was therefore named E. xiangfangensis Pb204. Further analysis of E. xiangfangensis Pb204’s genome revealed that it possessed several unique metal resistance genes not found in the type strain. The majority of these genes were found on an integrated conjugative element (ICE). The presence of the ICE element, with the extra cargo genes, in E. xiangfangensis Pb204 may play a role in AuNP synthesis.
XL2019
Capítulos de libros sobre el tema "Nanoparticle biogenesis"
Deepak, Venkataraman, Kalimuthu Kalishwaralal, Sureshbabu Ram Kumar Pandian y Sangiliyandi Gurunathan. "An Insight into the Bacterial Biogenesis of Silver Nanoparticles, Industrial Production and Scale-up". En Metal Nanoparticles in Microbiology, 17–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18312-6_2.
Texto completoNahvi, Insha, Sana Belkahla, Sarah Mousa Asiri y Suriya Rehman. "Overview and Prospectus of Algal Biogenesis of Nanoparticles". En Microbial Nanotechnology: Green Synthesis and Applications, 121–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1923-6_7.
Texto completoYanes, Rolando E., Jie Lu y Fuyuhiko Tamanoi. "Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy". En Eukaryotic RNases and their Partners in RNA Degradation and Biogenesis, Part B, 185–203. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-404741-9.00009-x.
Texto completoMungali, Manjul, Amit Kumar y Nisha Malik. "Green Synthesis Technology (GST)". En Handbook of Research on Green Technologies for Sustainable Management of Agricultural Resources, 180–87. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8434-7.ch011.
Texto completoMariappan, Yazhiniprabha, Vinotha Viswanathan y Vaseeharan Baskaralingam. "Culinary spices mediated biogenesis of nanoparticles for cancer and diabetes treatment". En Fundamentals of Bionanomaterials, 59–76. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-824147-9.00003-0.
Texto completoMaurizi, Lionel, Anne-Laure Papa, Julien Boudon, Sruthi Sudhakaran, Benoist Pruvot, David Vandroux, Johanna Chluba, Gérard Lizard y Nadine Millot. "Toxicological Risk Assessment of Emerging Nanomaterials: Cytotoxicity, Cellular Uptake, Effects on Biogenesis and Cell Organelle Activity, Acute Toxicity and Biodistribution of Oxide Nanoparticles". En Unraveling the Safety Profile of Nanoscale Particles and Materials - From Biomedical to Environmental Applications. InTech, 2018. http://dx.doi.org/10.5772/intechopen.71833.
Texto completo