Artículos de revistas sobre el tema "NanoMagnets Logic"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: NanoMagnets Logic.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "NanoMagnets Logic".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xueming Ju, S. Wartenburg, J. Rezgani, M. Becherer, J. Kiermaier, S. Breitkreutz, D. Schmitt-Landsiedel, W. Porod, P. Lugli y G. Csaba. "Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets". IEEE Transactions on Nanotechnology 11, n.º 1 (enero de 2012): 97–104. http://dx.doi.org/10.1109/tnano.2011.2157974.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Atulasimha, J. y S. Bandyopadhyay. "Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets". Applied Physics Letters 97, n.º 17 (25 de octubre de 2010): 173105. http://dx.doi.org/10.1063/1.3506690.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Luo, Zhaochu, Trong Phuong Dao, Aleš Hrabec, Jaianth Vijayakumar, Armin Kleibert, Manuel Baumgartner, Eugenie Kirk et al. "Chirally coupled nanomagnets". Science 363, n.º 6434 (28 de marzo de 2019): 1435–39. http://dx.doi.org/10.1126/science.aau7913.

Texto completo
Resumen
Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Li, Peng, Gyorgy Csaba, Vijay K. Sankar, Xueming Ju, Edit Varga, Paolo Lugli, X. Sharon Hu, Michael Niemier, Wolfgang Porod y Gary H. Bernstein. "Direct Measurement of Magnetic Coupling Between Nanomagnets for Nanomagnetic Logic Applications". IEEE Transactions on Magnetics 48, n.º 11 (noviembre de 2012): 4402–5. http://dx.doi.org/10.1109/tmag.2012.2202219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lambson, Brian, Zheng Gu, Morgan Monroe, Scott Dhuey, Andreas Scholl y Jeffrey Bokor. "Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic". Applied Physics A 111, n.º 2 (27 de marzo de 2013): 413–21. http://dx.doi.org/10.1007/s00339-013-7654-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shah, Faisal A., Gyorgy Csaba, Katherine Butler y Gary H. Bernstein. "Closely spaced nanomagnets by dual e-beam exposure for low-energy nanomagnet logic". Journal of Applied Physics 113, n.º 17 (7 de mayo de 2013): 17B904. http://dx.doi.org/10.1063/1.4794362.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ding, J. y A. O. Adeyeye. "Ni80Fe20/Ni binary nanomagnets for logic applications". Applied Physics Letters 101, n.º 10 (3 de septiembre de 2012): 103117. http://dx.doi.org/10.1063/1.4751259.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Arava, Hanu, Peter M. Derlet, Jaianth Vijayakumar, Jizhai Cui, Nicholas S. Bingham, Armin Kleibert y Laura J. Heyderman. "Computational logic with square rings of nanomagnets". Nanotechnology 29, n.º 26 (3 de mayo de 2018): 265205. http://dx.doi.org/10.1088/1361-6528/aabbc3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Turvani, Giovanna, Laura D’Alessandro y Marco Vacca. "Physical Simulations of High Speed and Low Power NanoMagnet Logic Circuits". Journal of Low Power Electronics and Applications 8, n.º 4 (8 de octubre de 2018): 37. http://dx.doi.org/10.3390/jlpea8040037.

Texto completo
Resumen
Among all “beyond CMOS” solutions currently under investigation, nanomagnetic logic (NML) technology is considered to be one of the most promising. In this technology, nanoscale magnets are rectangularly shaped and are characterized by the intrinsic capability of enabling logic and memory functions in the same device. The design of logic architectures is accomplished by the use of a clocking mechanism that is needed to properly propagate information. Previous works demonstrated that the magneto-elastic effect can be exploited to implement the clocking mechanism by altering the magnetization of magnets. With this paper, we present a novel clocking mechanism enabling the independent control of each single nanodevice exploiting the magneto-elastic effect and enabling high-speed NML circuits. We prove the effectiveness of this approach by performing several micromagnetic simulations. We characterized a chain of nanomagnets in different conditions (e.g., different distance among cells, different electrical fields, and different magnet geometries). This solution improves NML, the reliability of circuits, the fabrication process, and the operating frequency of circuits while keeping the energy consumption at an extremely low level.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yilmaz, Yalcin y Pinaki Mazumder. "Nonvolatile Nanopipelining Logic Using Multiferroic Single-Domain Nanomagnets". IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, n.º 7 (julio de 2013): 1181–88. http://dx.doi.org/10.1109/tvlsi.2012.2205594.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Debashis, Punyashloka, Rafatul Faria, Kerem Y. Camsari y Zhihong Chen. "Design of Stochastic Nanomagnets for Probabilistic Spin Logic". IEEE Magnetics Letters 9 (2018): 1–5. http://dx.doi.org/10.1109/lmag.2018.2860547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Gavagnin, Marco, Heinz D. Wanzenboeck, Domagoj Belić y Emmerich Bertagnolli. "Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition". ACS Nano 7, n.º 1 (17 de diciembre de 2012): 777–84. http://dx.doi.org/10.1021/nn305079a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Li, Peng, Gyorgy Csaba, Vijay K. Sankar, Xueming Ju, Paolo Lugli, X. Sharon Hu, Michael Niemier, Wolfgang Porod y Gary H. Bernstein. "Switching behavior of lithographically fabricated nanomagnets for logic applications". Journal of Applied Physics 111, n.º 7 (abril de 2012): 07B911. http://dx.doi.org/10.1063/1.3676220.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Dey, Himadri, Gyorgy Csaba, X. Sharon Hu, Michael Niemier, Gary H. Bernstein y Wolfgang Porod. "Switching Behavior of Sharply Pointed Nanomagnets for Logic Applications". IEEE Transactions on Magnetics 49, n.º 7 (julio de 2013): 3549–52. http://dx.doi.org/10.1109/tmag.2012.2237020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Faria, Rafatul, Kerem Yunus Camsari y Supriyo Datta. "Low-Barrier Nanomagnets as p-Bits for Spin Logic". IEEE Magnetics Letters 8 (2017): 1–5. http://dx.doi.org/10.1109/lmag.2017.2685358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fashami, Mohammad Salehi, Kamaram Munira, Supriyo Bandyopadhyay, Avik W. Ghosh y Jayasimha Atulasimha. "Switching of Dipole Coupled Multiferroic Nanomagnets in the Presence of Thermal Noise: Reliability of Nanomagnetic Logic". IEEE Transactions on Nanotechnology 12, n.º 6 (noviembre de 2013): 1206–12. http://dx.doi.org/10.1109/tnano.2013.2284777.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

D’Souza, Noel, Mohammad Salehi Fashami, Supriyo Bandyopadhyay y Jayasimha Atulasimha. "Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic". Nano Letters 16, n.º 2 (11 de enero de 2016): 1069–75. http://dx.doi.org/10.1021/acs.nanolett.5b04205.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Wang, Sen, Li Cai, Kai Qi, Xiaokuo Yang, Chaowen Feng y Huanqing Cui. "Impact of nanomagnets size on switching behaviour of all spin logic devices". Micro & Nano Letters 11, n.º 9 (septiembre de 2016): 508–13. http://dx.doi.org/10.1049/mnl.2016.0163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Pablo-Navarro, Javier, Soraya Sangiao, César Magén y José María de Teresa. "Magnetic Functionalization of Scanning Probes by Focused Electron Beam Induced Deposition Technology". Magnetochemistry 7, n.º 10 (13 de octubre de 2021): 140. http://dx.doi.org/10.3390/magnetochemistry7100140.

Texto completo
Resumen
The fabrication of nanostructures with high resolution and precise control of the deposition site makes Focused Electron Beam Induced Deposition (FEBID) a unique nanolithography process. In the case of magnetic materials, apart from the FEBID potential in standard substrates for multiple applications in data storage and logic, the use of this technology for the growth of nanomagnets on different types of scanning probes opens new paths in magnetic sensing, becoming a benchmark for magnetic functionalization. This work reviews the recent advances in the integration of FEBID magnetic nanostructures onto cantilevers to produce advanced magnetic sensing devices with unprecedented performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Melo, Luiz G. C., Thiago R. B. S. Soares y Omar P. Vilela Neto. "Analysis of the Magnetostatic Energy of Chains of Single-Domain Nanomagnets for Logic Gates". IEEE Transactions on Magnetics 53, n.º 9 (septiembre de 2017): 1–10. http://dx.doi.org/10.1109/tmag.2017.2704913.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Salehi Fashami, Mohammad, Kamaram Munira, Supriyo Bandyopadhyay, Avik W. Ghosh y Jayasimha Atulasimha. "Corrigendum to “Switching of Dipole Coupled Multiferroic Nanomagnets in the Presence of Thermal Noise: Reliability of Nanomagnetic Logic” [Nov 13 1206-1212]". IEEE Transactions on Nanotechnology 14, n.º 1 (enero de 2015): 196–97. http://dx.doi.org/10.1109/tnano.2014.2365796.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kaiser, Waldemar, Martina Kiechle, Grazvydas Ziemys, Doris Schmitt-Landsiedel y Stephan Breitkreutz-von Gamm. "Engineering the Switching Behavior of Nanomagnets for Logic Computation Using 3-D Modeling and Simulation". IEEE Transactions on Magnetics 53, n.º 6 (junio de 2017): 1–4. http://dx.doi.org/10.1109/tmag.2017.2654969.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Vanstone, Alex, Jack C. Gartside, Kilian D. Stenning, Troy Dion, Daan M. Arroo y Will R. Branford. "Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice". New Journal of Physics 24, n.º 4 (1 de abril de 2022): 043017. http://dx.doi.org/10.1088/1367-2630/ac608b.

Texto completo
Resumen
Abstract Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections (‘quenched disorder’) and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a ‘spectral fingerprint’ of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Liu, Jiahao, Xiaokuo Yang, Mingliang Zhang, Bo Wei, Cheng Li, Danna Dong y Chuang Li. "Efficient Dipole Coupled Nanomagnetic Logic in Stress Induced Elliptical Nanomagnet Array". IEEE Electron Device Letters 40, n.º 2 (febrero de 2019): 220–23. http://dx.doi.org/10.1109/led.2018.2889707.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Peng, Luca Gnoli, Mustafa M. Sadriwala, Fabrizio Riente, Giovanna Turvani, Naimul Hassan, Xuan Hu, Marco Vacca y Joseph S. Friedman. "Multilayer Nanomagnet Threshold Logic". IEEE Transactions on Electron Devices 68, n.º 4 (abril de 2021): 1944–49. http://dx.doi.org/10.1109/ted.2021.3055163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Vacca, Marco, Fabrizio Cairo, Giovanna Turvani, Fabrizio Riente, Maurizio Zamboni y Mariagrazia Graziano. "Virtual Clocking for NanoMagnet Logic". IEEE Transactions on Nanotechnology 15, n.º 6 (noviembre de 2016): 962–70. http://dx.doi.org/10.1109/tnano.2016.2617866.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Csaba, Gyorgy y Markus Becherer. "Nanomagnet Logic: Computing by magnetic ordering". IEEE Nanotechnology Magazine 14, n.º 1 (febrero de 2020): 6–13. http://dx.doi.org/10.1109/mnano.2019.2952232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Shiliang Liu, Xiaobo Sharon Hu, J. J. Nahas, M. T. Niemier, W. Porod y G. H. Bernstein. "Magnetic–Electrical Interface for Nanomagnet Logic". IEEE Transactions on Nanotechnology 10, n.º 4 (julio de 2011): 757–63. http://dx.doi.org/10.1109/tnano.2010.2077645.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Vacca, Marco, Mariagrazia Graziano, Luca Di Crescenzo, Alessandro Chiolerio, Andrea Lamberti, Davide Balma, Giancarlo Canavese et al. "Magnetoelastic Clock System for Nanomagnet Logic". IEEE Transactions on Nanotechnology 13, n.º 5 (septiembre de 2014): 963–73. http://dx.doi.org/10.1109/tnano.2014.2333657.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Alam, Mohmmad Tanvir, Mohammad Jafar Siddiq, Gary H. Bernstein, Michael Niemier, Wolfgang Porod y Xiaobo Sharon Hu. "On-Chip Clocking for Nanomagnet Logic Devices". IEEE Transactions on Nanotechnology 9, n.º 3 (mayo de 2010): 348–51. http://dx.doi.org/10.1109/tnano.2010.2041248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Siddiq, Mohammad A., Michael T. Niemier, Gyorgy Csaba, Alexei O. Orlov, Xiaobo Sharon Hu, Wolfgang Porod y Gary H. Bernstein. "A Nanomagnet Logic Field-Coupled Electrical Input". IEEE Transactions on Nanotechnology 12, n.º 5 (septiembre de 2013): 734–42. http://dx.doi.org/10.1109/tnano.2013.2273183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Niemier, M. T., G. H. Bernstein, G. Csaba, A. Dingler, X. S. Hu, S. Kurtz, S. Liu et al. "Nanomagnet logic: progress toward system-level integration". Journal of Physics: Condensed Matter 23, n.º 49 (25 de noviembre de 2011): 493202. http://dx.doi.org/10.1088/0953-8984/23/49/493202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Carlton, David B., Nathan C. Emley, Eduard Tuchfeld y Jeffrey Bokor. "Simulation Studies of Nanomagnet-Based Logic Architecture". Nano Letters 8, n.º 12 (10 de diciembre de 2008): 4173–78. http://dx.doi.org/10.1021/nl801607p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Siddiq, Mohammad Abu Jafar, Katherine Butler, Himadri Dey, Faisal Ahmed Shah, Peng Li, Edit Varga, Alexei Orlov et al. "Nanomagnet Logic Gate With Programmable-Electrical Input". IEEE Transactions on Magnetics 50, n.º 11 (noviembre de 2014): 1–4. http://dx.doi.org/10.1109/tmag.2014.2325853.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Butler, Katherine C., Gary H. Bernstein, Gyorgy Csaba, Wolfgang Porod, X. Sharon Hu y Michael Niemier. "Contiguous clock lines for pipelined nanomagnet logic". Journal of Computational Electronics 13, n.º 3 (31 de julio de 2014): 763–68. http://dx.doi.org/10.1007/s10825-014-0598-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Crocker, Michael, Michael Niemier y X. Sharon Hu. "A Reconfigurable PLA Architecture for Nanomagnet Logic". ACM Journal on Emerging Technologies in Computing Systems 8, n.º 1 (febrero de 2012): 1–25. http://dx.doi.org/10.1145/2093145.2093146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kiermaier, J., S. Breitkreutz, I. Eichwald, X. Ju, G. Csaba, D. Schmitt-Landsiedel y M. Becherer. "Programmable Input for Nanomagnetic Logic Devices". EPJ Web of Conferences 40 (2013): 16007. http://dx.doi.org/10.1051/epjconf/20134016007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

D'Souza, Noel, Jayasimha Atulasimha y Supriyo Bandyopadhyay. "Four-state nanomagnetic logic using multiferroics". Journal of Physics D: Applied Physics 44, n.º 26 (16 de junio de 2011): 265001. http://dx.doi.org/10.1088/0022-3727/44/26/265001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Vacca, Marco, Mariagrazia Graziano y Maurizio Zamboni. "Asynchronous Solutions for Nanomagnetic Logic Circuits". ACM Journal on Emerging Technologies in Computing Systems 7, n.º 4 (diciembre de 2011): 1–18. http://dx.doi.org/10.1145/2043643.2043645.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Vacca, Marco, Mariagrazia Graziano y Maurizio Zamboni. "Nanomagnetic Logic Microprocessor: Hierarchical Power Model". IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, n.º 8 (agosto de 2013): 1410–20. http://dx.doi.org/10.1109/tvlsi.2012.2211903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Eichwald, Irina, Stephan Breitkreutz, Josef Kiermaier, Gyorgy Csaba, Doris Schmitt-Landsiedel y Markus Becherer. "Signal crossing in perpendicular nanomagnetic logic". Journal of Applied Physics 115, n.º 17 (7 de mayo de 2014): 17E510. http://dx.doi.org/10.1063/1.4863810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

DAS, JAYITA, SYED M. ALAM y SANJUKTA BHANJA. "RECENT TRENDS IN SPINTRONICS-BASED NANOMAGNETIC LOGIC". SPIN 04, n.º 03 (septiembre de 2014): 1450004. http://dx.doi.org/10.1142/s2010324714500040.

Texto completo
Resumen
With the growing concerns of standby power in sub-100-nm CMOS technologies, alternative computing techniques and memory technologies are explored. Spin transfer torque magnetoresistive RAM (STT-MRAM) is one such nonvolatile memory relying on magnetic tunnel junctions (MTJs) to store information. It uses spin transfer torque to write information and magnetoresistance to read information. In 2012, Everspin Technologies, Inc. commercialized the first 64Mbit Spin Torque MRAM. On the computing end, nanomagnetic logic (NML) is a promising technique with zero leakage and high data retention. In 2000, Cowburn and Welland first demonstrated its potential in logic and information propagation through magnetostatic interaction in a chain of single domain circular nanomagnetic dots of Supermalloy ( Ni 80 Fe 14 Mo 5 X 1, X is other metals). In 2006, Imre et al. demonstrated wires and majority gates followed by coplanar cross wire systems demonstration in 2010 by Pulecio et al. Since 2004 researchers have also investigated the potential of MTJs in logic. More recently with dipolar coupling between MTJs demonstrated in 2012, logic-in-memory architecture with STT-MRAM have been investigated. The architecture borrows the computing concept from NML and read and write style from MRAM. The architecture can switch its operation between logic and memory modes with clock as classifier. Further through logic partitioning between MTJ and CMOS plane, a significant performance boost has been observed in basic computing blocks within the architecture. In this work, we have explored the developments in NML, in MTJs and more recent developments in hybrid MTJ/CMOS logic-in-memory architecture and its unique logic partitioning capability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Niemier, M. T., E. Varga, G. H. Bernstein, W. Porod, M. T. Alam, A. Dingler, A. Orlov y X. S. Hu. "Shape Engineering for Controlled Switching With Nanomagnet Logic". IEEE Transactions on Nanotechnology 11, n.º 2 (marzo de 2012): 220–30. http://dx.doi.org/10.1109/tnano.2010.2056697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Vacca, M., M. Graziano y M. Zamboni. "Majority Voter Full Characterization for Nanomagnet Logic Circuits". IEEE Transactions on Nanotechnology 11, n.º 5 (septiembre de 2012): 940–47. http://dx.doi.org/10.1109/tnano.2012.2207965.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Shah, Faisal A., Gyorgy Csaba, Michael T. Niemier, Xiaobo S. Hu, Wolfgang Porod y Gary H. Bernstein. "Error analysis for ultra dense nanomagnet logic circuits". Journal of Applied Physics 117, n.º 17 (7 de mayo de 2015): 17A906. http://dx.doi.org/10.1063/1.4915353.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Gonelli, Marco, Samuele Fin, Giovanni Carlotti, Himadri Dey, György Csaba, Wolfgang Porod, Gary H. Bernstein y Diego Bisero. "Robustness of majority gates based on nanomagnet logic". Journal of Magnetism and Magnetic Materials 460 (agosto de 2018): 432–37. http://dx.doi.org/10.1016/j.jmmm.2018.04.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Gavagnin, Marco, Heinz D. Wanzenboeck, Stefan Wachter, Mostafa M. Shawrav, Anders Persson, Klas Gunnarsson, Peter Svedlindh, Michael Stöger-Pollach y Emmerich Bertagnolli. "Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic". ACS Applied Materials & Interfaces 6, n.º 22 (29 de octubre de 2014): 20254–60. http://dx.doi.org/10.1021/am505785t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Varga, Edit, Alexei Orlov, Michael T. Niemier, X. Sharon Hu, Gary H. Bernstein y Wolfgang Porod. "Experimental Demonstration of Fanout for Nanomagnetic Logic". IEEE Transactions on Nanotechnology 9, n.º 6 (noviembre de 2010): 668–70. http://dx.doi.org/10.1109/tnano.2010.2060347.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Papp, Adam, Michael T. Niemier, Arpad Csurgay, Markus Becherer, Stephan Breitkreutz, Josef Kiermaier, Irina Eichwald et al. "Threshold Gate-Based Circuits From Nanomagnetic Logic". IEEE Transactions on Nanotechnology 13, n.º 5 (septiembre de 2014): 990–96. http://dx.doi.org/10.1109/tnano.2014.2342659.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kiermaier, J., S. Breitkreutz, G. Csaba, D. Schmitt-Landsiedel y M. Becherer. "Electrical input structures for nanomagnetic logic devices". Journal of Applied Physics 111, n.º 7 (abril de 2012): 07E341. http://dx.doi.org/10.1063/1.3678584.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía