Artículos de revistas sobre el tema "Na3V2(PO4)2F3"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Na3V2(PO4)2F3".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhang, Jiexin, Congrui Zhang, Yu Han, Xingyu Zhao, Wenjie Liu y Yi Ding. "A surface-modified Na3V2(PO4)2F3 cathode with high rate capability and cycling stability for sodium ion batteries". RSC Advances 14, n.º 20 (2024): 13703–10. http://dx.doi.org/10.1039/d4ra00427b.
Texto completoNowagiel, Maciej, Anton Hul, Edvardas Kazakevicius, Algimantas Kežionis, Jerzy E. Garbarczyk y Tomasz K. Pietrzak. "Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V, Ti, Fe)". Coatings 13, n.º 3 (21 de febrero de 2023): 482. http://dx.doi.org/10.3390/coatings13030482.
Texto completoYu, Xiaobo, Tianyi Lu, Xiaokai Li, Jiawei Qi, Luchen Yuan, Zu Man y Haitao Zhuo. "Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries". RSC Advances 12, n.º 22 (2022): 14007–17. http://dx.doi.org/10.1039/d2ra01292h.
Texto completoLi, Long, Jing Zhao, Hongyang Zhao, Yuanyuan Qin, Xiaolong Zhu, Hu Wu, Zhongxiao Song y Shujiang Ding. "Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized?" Journal of Materials Chemistry A 10, n.º 16 (2022): 8877–86. http://dx.doi.org/10.1039/d2ta00565d.
Texto completoGuo, Rongting, Wei Li, Mingjun Lu, Yiju Lv, Huiting Ai, Dan Sun, Zheng Liu y Guo-Cheng Han. "Na3V2(PO4)2F3@bagasse carbon as cathode material for lithium/sodium hybrid ion battery". Physical Chemistry Chemical Physics 24, n.º 9 (2022): 5638–45. http://dx.doi.org/10.1039/d1cp05011g.
Texto completoLin, Zhi. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x". Crystals 14, n.º 1 (28 de diciembre de 2023): 43. http://dx.doi.org/10.3390/cryst14010043.
Texto completoOlchowka, Jacob, Long H. B. Nguyen, Thibault Broux, Paula Sanz Camacho, Emmanuel Petit, François Fauth, Dany Carlier, Christian Masquelier y Laurence Croguennec. "Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials". Chemical Communications 55, n.º 78 (2019): 11719–22. http://dx.doi.org/10.1039/c9cc05137f.
Texto completoBroux, Thibault, Benoît Fleutot, Rénald David, Annelise Brüll, Philippe Veber, François Fauth, Matthieu Courty, Laurence Croguennec y Christian Masquelier. "Temperature Dependence of Structural and Transport Properties for Na3V2(PO4)2F3 and Na3V2(PO4)2F2.5O0.5". Chemistry of Materials 30, n.º 2 (5 de enero de 2018): 358–65. http://dx.doi.org/10.1021/acs.chemmater.7b03529.
Texto completoBianchini, M., N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier y L. Croguennec. "Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study". Chemistry of Materials 26, n.º 14 (30 de junio de 2014): 4238–47. http://dx.doi.org/10.1021/cm501644g.
Texto completoYang, Ze, Guolong Li, Jingying Sun, Lixin Xie, Yan Jiang, Yunhui Huang y Shuo Chen. "High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries". Energy Storage Materials 25 (marzo de 2020): 724–30. http://dx.doi.org/10.1016/j.ensm.2019.09.014.
Texto completoBianchini, M., F. Lalère, H. B. L. Nguyen, F. Fauth, R. David, E. Suard, L. Croguennec y C. Masquelier. "Ag3V2(PO4)2F3, a new compound obtained by Ag+/Na+ ion exchange into the Na3V2(PO4)2F3 framework". Journal of Materials Chemistry A 6, n.º 22 (2018): 10340–47. http://dx.doi.org/10.1039/c8ta01095a.
Texto completoBianchini, M., F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier y L. Croguennec. "Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction". Chemistry of Materials 27, n.º 8 (7 de abril de 2015): 3009–20. http://dx.doi.org/10.1021/acs.chemmater.5b00361.
Texto completoLi, Wei, Xiaoyun Jing, Kai Jiang y Dihua Wang. "Observation of Structural Decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as Cathodes for Aqueous Zn-Ion Batteries". ACS Applied Energy Materials 4, n.º 3 (11 de febrero de 2021): 2797–807. http://dx.doi.org/10.1021/acsaem.1c00067.
Texto completoGOVER, R., A. BRYAN, P. BURNS y J. BARKER. "The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3". Solid State Ionics 177, n.º 17-18 (julio de 2006): 1495–500. http://dx.doi.org/10.1016/j.ssi.2006.07.028.
Texto completoXun, Jiahong, Yu Zhang y Huayun Xu. "One step synthesis of vesicular Na3V2(PO4)2F3 and network of Na3V2(PO4)2F3@graphene nanosheets with improved electrochemical performance as cathode material for sodium ion battery". Inorganic Chemistry Communications 115 (mayo de 2020): 107884. http://dx.doi.org/10.1016/j.inoche.2020.107884.
Texto completoJames Abraham, Jeffin, Buzaina Moossa, Hanan Abdurehman Tariq, Ramazan Kahraman, Siham Al-Qaradawi y R. A. Shakoor. "Electrochemical Performance of Na3V2(PO4)2F3 Electrode Material in a Symmetric Cell". International Journal of Molecular Sciences 22, n.º 21 (7 de noviembre de 2021): 12045. http://dx.doi.org/10.3390/ijms222112045.
Texto completoKosova, Nina, Daria Rezepova y Nicolas Montroussier. "Effect of La3+ Modification on the Electrochemical Performance of Na3V2(PO4)2F3". Batteries 4, n.º 3 (9 de julio de 2018): 32. http://dx.doi.org/10.3390/batteries4030032.
Texto completoSong, Weixin, Xiaobo Ji, Jun Chen, Zhengping Wu, Yirong Zhu, Kefen Ye, Hongshuai Hou, Mingjun Jing y Craig E. Banks. "Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries". Physical Chemistry Chemical Physics 17, n.º 1 (2015): 159–65. http://dx.doi.org/10.1039/c4cp04649h.
Texto completoPianta, Nicolò, Davide Locatelli y Riccardo Ruffo. "Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries". Ionics 27, n.º 5 (2 de abril de 2021): 1853–60. http://dx.doi.org/10.1007/s11581-021-04015-y.
Texto completoSamarin, Aleksandr Sh, Alexey V. Ivanov y Stanislav S. Fedotov. "Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review". Clean Technologies 5, n.º 3 (6 de julio de 2023): 881–900. http://dx.doi.org/10.3390/cleantechnol5030044.
Texto completoSemykina, Daria O., Maria A. Kirsanova, Yury M. Volfkovich, Valentin E. Sosenkin y Nina V. Kosova. "Porosity, microstructure and electrochemistry of Na3V2(PO4)2F3/C prepared by mechanical activation". Journal of Solid State Chemistry 297 (mayo de 2021): 122041. http://dx.doi.org/10.1016/j.jssc.2021.122041.
Texto completoLi, Wei, Kangli Wang, Shijie Cheng y Kai Jiang. "A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode". Energy Storage Materials 15 (noviembre de 2018): 14–21. http://dx.doi.org/10.1016/j.ensm.2018.03.003.
Texto completoWang, Jie, Qiming Liu, Shiyue Cao, Huijuan Zhu y Yilin Wang. "Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes". Journal of Colloid and Interface Science 665 (julio de 2024): 1043–53. http://dx.doi.org/10.1016/j.jcis.2024.04.003.
Texto completoHu, Fangdong y Xiaolei Jiang. "Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries". Inorganic Chemistry Communications 129 (julio de 2021): 108653. http://dx.doi.org/10.1016/j.inoche.2021.108653.
Texto completoVali, R., P. Moller y A. Janes. "Synthesis and Characterization of Na3V2(PO4)2F3 Based Cathode Material for Sodium Ion Batteries". ECS Transactions 69, n.º 39 (28 de diciembre de 2015): 27–36. http://dx.doi.org/10.1149/06939.0027ecst.
Texto completoZhu, Lin, Hong Wang, Dan Sun, Yougen Tang y Haiyan Wang. "A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes". Journal of Materials Chemistry A 8, n.º 41 (2020): 21387–407. http://dx.doi.org/10.1039/d0ta07872g.
Texto completoPark, Min Je y Arumugam Manthiram. "Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries". ACS Applied Energy Materials 3, n.º 5 (14 de abril de 2020): 5015–23. http://dx.doi.org/10.1021/acsaem.0c00505.
Texto completoPeng, Manhua, Xiayan Wang y Guangsheng Guo. "Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity". Applied Materials Today 19 (junio de 2020): 100554. http://dx.doi.org/10.1016/j.apmt.2020.100554.
Texto completoSu, Renyuan, Weikai Zhu, Kang Liang, Peng Wei, Jianbin Li, Wenjun Liu y Yurong Ren. "Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode". Molecules 28, n.º 3 (1 de febrero de 2023): 1409. http://dx.doi.org/10.3390/molecules28031409.
Texto completoGeng, Jiguo, Feng Li, Shengqian Ma, Jing Xiao y Manling Sui. "First Principle Study of Na3V2(PO4)2F3 for Na Batteries Application and Experimental Investigation". International Journal of Electrochemical Science 11, n.º 5 (mayo de 2016): 3815–23. http://dx.doi.org/10.1016/s1452-3981(23)17439-6.
Texto completoNguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola et al. "Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution". Energy Storage Materials 20 (julio de 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.
Texto completoCheng, Jun, Yanjun Chen, Shiqi Sun, Zeyi Tian, Yaoyao Linghu, Zhen Tian, Chao Wang, Zhenfeng He y Li Guo. "Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries". Ceramics International 47, n.º 13 (julio de 2021): 18065–74. http://dx.doi.org/10.1016/j.ceramint.2021.03.122.
Texto completoLi, Feng, Yifei Zhao, Lishuang Xia, Zhendong Yang, Jinping Wei y Zhen Zhou. "Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries". Journal of Materials Chemistry A 8, n.º 25 (2020): 12391–97. http://dx.doi.org/10.1039/d0ta00130a.
Texto completoShakoor, R. A., Dong-Hwa Seo, Hyungsub Kim, Young-Uk Park, Jongsoon Kim, Sung-Wook Kim, Hyeokjo Gwon, Seongsu Lee y Kisuk Kang. "A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries". Journal of Materials Chemistry 22, n.º 38 (2012): 20535. http://dx.doi.org/10.1039/c2jm33862a.
Texto completoCriado, A., P. Lavela, G. Ortiz, J. L. Tirado, C. Pérez-Vicente, N. Bahrou y Z. Edfouf. "Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries". Electrochimica Acta 332 (febrero de 2020): 135502. http://dx.doi.org/10.1016/j.electacta.2019.135502.
Texto completoLiu, Zigeng, Yan-Yan Hu, Matthew T. Dunstan, Hua Huo, Xiaogang Hao, Huan Zou, Guiming Zhong, Yong Yang y Clare P. Grey. "Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3". Chemistry of Materials 26, n.º 8 (11 de abril de 2014): 2513–21. http://dx.doi.org/10.1021/cm403728w.
Texto completoZhu, Lin, Qi Zhang, Dan Sun, Qi Wang, Nana Weng, Yougen Tang y Haiyan Wang. "Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries". Materials Chemistry Frontiers 4, n.º 10 (2020): 2932–42. http://dx.doi.org/10.1039/d0qm00364f.
Texto completoHu, Yu, Peiyu Chen, Fanfan Liu, Xiaolong Cheng, Yu Shao, Peng Lu, Hui Zhang, Shikuo Li, Fangzhi Huang y Yu Jiang. "Dual-anion ether electrolyte enables stable high-voltage Na3V2(PO4)2F3 cathode under wide temperatures". Journal of Power Sources 602 (mayo de 2024): 234405. http://dx.doi.org/10.1016/j.jpowsour.2024.234405.
Texto completoPuspitasari, Diah Agustina, Jagabandhu Patra, I.-Ming Hung, Dominic Bresser, Tai-Chou Lee y Jeng-Kuei Chang. "Optimizing the Mg Doping Concentration of Na3V2–xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties". ACS Sustainable Chemistry & Engineering 9, n.º 20 (11 de mayo de 2021): 6962–71. http://dx.doi.org/10.1021/acssuschemeng.1c00418.
Texto completoZhu, Pengfei, Wenjie Peng, Huajun Guo, Xinhai Li, Zhixing Wang, Ding Wang, Jianguo Duan, Jiexi Wang y Guochun Yan. "Toward high-performance sodium storage cathode: Construction and purification of carbon-coated Na3V2(PO4)2F3 materials". Journal of Power Sources 546 (octubre de 2022): 231986. http://dx.doi.org/10.1016/j.jpowsour.2022.231986.
Texto completoKosova, Nina V., Daria O. Rezepova, Sergey A. Petrov y Arseny B. Slobodyuk. "Electrochemical and Chemical Na+/Li+Ion Exchange in Na-Based Cathode Materials: Na1.56Fe1.22P2O7and Na3V2(PO4)2F3". Journal of The Electrochemical Society 164, n.º 1 (7 de diciembre de 2016): A6192—A6200. http://dx.doi.org/10.1149/2.0301701jes.
Texto completoYi, Hongming, Le Lin, Moxiang Ling, Zhiqiang Lv, Rui Li, Qiang Fu, Huamin Zhang, Qiong Zheng y Xianfeng Li. "Scalable and Economic Synthesis of High-Performance Na3V2(PO4)2F3 by a Solvothermal–Ball-Milling Method". ACS Energy Letters 4, n.º 7 (11 de junio de 2019): 1565–71. http://dx.doi.org/10.1021/acsenergylett.9b00748.
Texto completoLiu, Shuang, Liubin Wang, Jian Liu, Meng Zhou, Qingshun Nian, Yazhi Feng, Zhanliang Tao y Lianyi Shao. "Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries". Journal of Materials Chemistry A 7, n.º 1 (2019): 248–56. http://dx.doi.org/10.1039/c8ta09194c.
Texto completoGuo, Biao, Wenyu Diao, Tingting Yuan, Yuan Liu, Qi Yuan, Guannan Li y Jingang Yang. "Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating". Journal of Materials Science: Materials in Electronics 29, n.º 19 (23 de julio de 2018): 16325–29. http://dx.doi.org/10.1007/s10854-018-9722-8.
Texto completoZhang, Yusheng, Youzuo Hu, Tingting Feng, Ziqiang Xu y Mengqiang Wu. "Mg-doped Na3V2-xMgx(PO4)2F3@C sodium ion cathodes with enhanced stability and rate capability". Journal of Power Sources 602 (mayo de 2024): 234337. http://dx.doi.org/10.1016/j.jpowsour.2024.234337.
Texto completoHwang, Jinkwang, Ikuma Aoyagi, Masaya Takiyama, Kazuhiko Matsumoto y Rika Hagiwara. "Inhibition of Aluminum Corrosion with the Addition of the Tris(pentafluoroethyl)trifluorophosphate Anion to a Sulfonylamide-Based Ionic Liquid for Sodium-Ion Batteries". Journal of The Electrochemical Society 169, n.º 8 (1 de agosto de 2022): 080522. http://dx.doi.org/10.1149/1945-7111/ac8a1f.
Texto completoZhu, Weikai, Kang Liang y Yurong Ren. "Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone". Ceramics International 47, n.º 12 (junio de 2021): 17192–201. http://dx.doi.org/10.1016/j.ceramint.2021.03.030.
Texto completoNongkynrih, Jeffry, Abhinanda Sengupta, Brindaban Modak, Sagar Mitra, A. K. Tyagi y Dimple P. Dutta. "Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries". Electrochimica Acta 415 (mayo de 2022): 140256. http://dx.doi.org/10.1016/j.electacta.2022.140256.
Texto completoWang, Mingxue, Xiaobing Huang, Haiyan Wang, Tao Zhou, Huasheng Xie y Yurong Ren. "Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries". RSC Advances 9, n.º 53 (2019): 30628–36. http://dx.doi.org/10.1039/c9ra05089b.
Texto completoYan, Guochun, Romain Dugas y Jean-Marie Tarascon. "The Na3V2(PO4)2F3/Carbon Na-Ion Battery: Its Performance Understanding as Deduced from Differential Voltage Analysis". Journal of The Electrochemical Society 165, n.º 2 (2018): A220—A227. http://dx.doi.org/10.1149/2.0831802jes.
Texto completo