Literatura académica sobre el tema "Na3(VO)2(PO4)2F"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Na3(VO)2(PO4)2F".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Na3(VO)2(PO4)2F"
Lin, Zhi. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x". Crystals 14, n.º 1 (28 de diciembre de 2023): 43. http://dx.doi.org/10.3390/cryst14010043.
Texto completoNguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola et al. "Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution". Energy Storage Materials 20 (julio de 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.
Texto completoYin, Yameng, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen y Qinyou An. "Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties". Journal of Materials Science & Technology 83 (agosto de 2021): 83–89. http://dx.doi.org/10.1016/j.jmst.2020.11.075.
Texto completoSerras, Paula, Verónica Palomares, Pierre Kubiak, Luis Lezama y Teófilo Rojo. "Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating". Electrochemistry Communications 34 (septiembre de 2013): 344–47. http://dx.doi.org/10.1016/j.elecom.2013.07.010.
Texto completoXing, Siyang, Yujuan Cheng, Fei Yu y Jie Ma. "Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity". Journal of Colloid and Interface Science 598 (septiembre de 2021): 511–18. http://dx.doi.org/10.1016/j.jcis.2021.04.051.
Texto completoNguyen, Long H. B., Jacob Olchowka, Stéphanie Belin, Paula Sanz Camacho, Mathieu Duttine, Antonella Iadecola, François Fauth, Dany Carlier, Christian Masquelier y Laurence Croguennec. "Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution". ACS Applied Materials & Interfaces 11, n.º 42 (27 de septiembre de 2019): 38808–18. http://dx.doi.org/10.1021/acsami.9b14249.
Texto completoDeng, Gang, Dongliang Chao, Yuwei Guo, Zhen Chen, Huanhuan Wang, Serguei V. Savilov, Jianyi Lin y Ze Xiang Shen. "Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery". Energy Storage Materials 5 (octubre de 2016): 198–204. http://dx.doi.org/10.1016/j.ensm.2016.07.007.
Texto completoBi, Xueli, Yaqi Peng, Shanshan Liu, Ye Liu, Xin Yang, Kai Feng y Jianjiang Hu. "Na3(VO)2(PO4)2F coated carbon nanotubes: A cathode material with high-specific capacity for aqueous zinc-ion batteries". Electrochimica Acta 475 (enero de 2024): 143657. http://dx.doi.org/10.1016/j.electacta.2023.143657.
Texto completoHu, Qiao, Guangming Han, Jiaying Liao y Jianfeng Yao. "Boosting sodium-ion battery performance using Na3(VO)2(PO4)2F microrods self-embedded in a 3D conductive interpenetrated framework". Journal of Alloys and Compounds 988 (junio de 2024): 174261. http://dx.doi.org/10.1016/j.jallcom.2024.174261.
Texto completoYang, Xiaoqiang, Meijing Wang, Xingde Xiang, Song Liu y Chunxia Chen. "An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries". Journal of Electroanalytical Chemistry 956 (marzo de 2024): 118088. http://dx.doi.org/10.1016/j.jelechem.2024.118088.
Texto completoTesis sobre el tema "Na3(VO)2(PO4)2F"
Fang, Runhe. "Effect of composition and morphology on the electrochemical performance of Na3V2(PO4)2F3/Na3V2(PO4)2FO2". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS001.pdf.
Texto completoIn the sodium ion battery system, the positive electrode plays an important role. Although weaker than layered oxide materials in some aspects, such as electrical conductivity, polyanionic materials have become one of the two main categories of positive electrode materials with their excellent electrochemical stability and high operating voltage. Na3V2(PO4)2F3-yOy (0≤y≤2) family is especially the most outstanding in terms of electrochemical performance. However, the electrochemical performance is limited because of the rather poor electronic conductivity induced by the isolated vanadium bi-octahedra units within the structure. There have been many studies to improve the electrochemical properties of Na3V2(PO4)2F3-yOy by means of carbon coating and special morphology etc. However, unconscious improvements in multiple aspects can lead to neglected further understanding of one specific changed element, due to the ultimately electrochemical performance enhancements. Therefore, this PhD thesis is consistent of well controlling all the varieties and comparing the morphology and composition impact of Na3V2(PO4)2F3-yOy without any carbon coating in order to improve its final electrochemical performance through a more fundamental perspective. Thus, this work is composed of the next parts under the form of deposited articles. In the first chapter, which is a state of the art, the background of the development of batteries and especially the sodium ion batteries will be briefly introduced. The common materials for each different part of the sodium ion battery will be further described. Next, attention will be focused on Na3V2(PO4)2F3-yOy and show the current status of its research in detail in terms of crystal structure and synthesis, etc. Then in the second chapter, a series of slightly tuned synthesis with the same precursors were carried out to obtain the Na3V2(PO4)2F3-yOy particles with different morphologies and similar composition and then investigate the effect of morphologies on energy storage performance. In the subsequent chapter III, from one most performant morphology found in the second chapter, the effect of the oxygen content on transport properties and electrochemical performance within Na3V2(PO4)2F3-yOy (different O2- substitution percent) were investigated, while keeping the morphologies unchanged. In the next chapter IV, the Na3V2(PO4)2FO2 found in chapter III with those synthesized through different methods with the same particle composition but totally different morphologies and surface functionalization were compared to further understand the morphology and surface coating impact on the energy storage capacity. At last, deep eutectic solvent, one kind of ionic liquid, was used as a new synthesis medium to reach a totally new and special morphology does not reported before and a new approach to make a carbon coating. In general, the different morphologies and compositions of Na3V2(PO4)2F3-yOy are obtained separately by controlling and refining a series of synthesis methods. Their influences on the final electrochemistry of the material have also been investigated separately. These studies contribute to the understanding of this material from a fundamental point of view, thus facilitating further optimization
Capítulos de libros sobre el tema "Na3(VO)2(PO4)2F"
Chao, Dongliang. "Na3(VO)2(PO4)2F Array for Cathode of Na-Ion Battery". En Springer Theses, 75–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3080-3_4.
Texto completo