Tesis sobre el tema "Muscle cells"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Muscle cells".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Leskinen, Markus. "Mast cell-mediated apoptosis of smooth muscle cells and endothelial cells". Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/leskinen/.
Texto completoWoodhouse, Samuel. "The role of Ezh2 in adult muscle stem cell fate". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610201.
Texto completoTomc, Lyn Kathryn. "Role of MEF2 proteins in the activation of the c-jun and MCK genes in skeletal muscle /". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/MQ56210.pdf.
Texto completoPESSINA, PATRIZIA. "Necdin enhances muscle reconstitution of dystrophic muscle by mesoangioblast cells". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7594.
Texto completoPeden, Ryan Stephen Medical Sciences Faculty of Medicine UNSW. "Activation of vascular smooth muscle cells". Awarded by:University of New South Wales. School of Medical Sciences, 2006. http://handle.unsw.edu.au/1959.4/24925.
Texto completoSpendiff, Sally. "Mitochondrial myopathies and muscle stem cells". Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1530.
Texto completoIyer, Dharini. "Generation of epicardium and epicardium-derived coronary-like smooth muscle cells from human pluripotent stem cells". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708997.
Texto completoIzzard, Tanya. "Extracellular matrix and the cell cycle in vascular smooth muscle cells". Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322616.
Texto completoHolder, Emma L. (Emma Lesley). "Gene expression in muscle tissue and cells". Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69755.
Texto completoHaddad, Mansour Emil Goerge. "GPCRs in rat primary skeletal muscle cells". Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/14176/.
Texto completoFernyhough, Melinda. "The growth and development of muscle and fat cells". Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/Spring2006/m%5Ffernyhough%5F042706.pdf.
Texto completoBlackwell, Danielle. "The role of Talpid3 in skeletal muscle satellite cells and skeletal muscle regeneration". Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/66948/.
Texto completoLiu, Po-shiu Jackie. "Effects of flavonoids on proliferation of breast cancer cells and vascular smooth muscle cells /". View the Table of Contents & Abstract, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38480189.
Texto completoMcKilligin, Elaine. "Characterisation and comparison of cell culture models of intimal smooth muscle cells". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624223.
Texto completoCollins, Charlotte Anne. "An investigation of the stem cell potential of skeletal muscle satellite cells". Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/1446604/.
Texto completoFakhry, Maya. "Molecular mechanisms of vascular smooth muscle cell transdifferentiation into osteochondrocyte-like cells". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10246.
Texto completoIn patients with chronic kidney disease (CKD), vascular calcification represents the main cause of mortality. Vascular calcification results from the trans-differentiation of vascular smooth muscle cells (VSMCs) into cells similar to osteoblasts and/or chondrocytes, in response to inflammatory cytokines or hyperphosphatemia. Calcifying VSMCs form calcium phosphate crystals through the activity of tissue nonspecific alkaline phosphatase (TNAP). In light of recent findings, we hypothesized that TNAP also modulates VSMC trans-differentiation. Our objectives were therefore to determine the effect of TNAP activity on VSMC trans-differentiation, and secondly to investigate the molecular mechanisms involved in TNAP expression in aortas, with a particular interest in microRNAs. We first observed that addition of purified alkaline phosphatase or TNAP over-expression stimulates the expression of chondrocyte markers in culture of the mouse and rat VSMC lines, and of mesenchymal stem cells. Moreover, TNAP inhibition blocks the maturation of mouse primary chondrocytes and reduces mineralization. We exclude a role for crystals in TNAP effects, since addition of crystals alone or associated to a collagenous matrix fails to mimic TNAP effects. We rather suspect that TNAP acts through the hydrolysis of inorganic pyrophosphate (PPi). Indeed, PPi is hydrolyzed by TNAP in VSMCs and chondrocytes and addition of PPi mimics the effects of TNAP inhibition on chondrocyte maturation. Finally, we report microRNA signature of aortic explants treated under hyperphosphatemic conditions that induce vascular calcification. These results could be of particular importance in patients with CKD
Govindan, Sriram. "Ca²⁺ signalling in cultured aortic smooth muscle cells". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609178.
Texto completoJump, Seth. "Fgf2-stimulated proliferation is lower in muscle precursor cells from old rats". Diss., Columbia, Mo. : University of Missouri-Columbia, 2009. http://hdl.handle.net/10355/6775.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "May 2009" Includes bibliographical references.
Wang, Yenfeng. "The role of mast cells in foam cell formation, growth inhibition, and apoptosis of smooth muscle cells". Helsinki : University of Helsinki, 1999. http://ethesis.helsinki.fi/julkaisut/mat/bioti/vk/wang/.
Texto completoLee, Jonathan Cheuk Fung. "Intrinsic electrophysiological properties of interstitial cells of Cajal and smooth muscle cells". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ66217.pdf.
Texto completoJudson, Robert Neil. "The role of Yes-associated protein (YAP) in skeletal muscle satellite cells and myofibres". Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=189444.
Texto completoTan, Yu Yin Nicole Medical Sciences Faculty of Medicine UNSW. "Gene expression during activation of smooth muscle cells". Publisher:University of New South Wales. Medical Sciences, 2009. http://handle.unsw.edu.au/1959.4/43615.
Texto completoSeger, Claudia. "Investigations of muscle stem cells in the Zebrafish". Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500166.
Texto completoShek, Jimmy. "Homogenised models of Smooth Muscle and Endothelial Cells". Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9060.
Texto completoLe, Jeune Ivan Robert. "Phosphodiesterase 4D5 in human airway smooth muscle cells". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408054.
Texto completoByrne, Julie Alison. "Mechanisms of damage in isolated skeletal muscle cells". Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333620.
Texto completoKaramariti, Eirini. "Direct reprogramming of fibroblasts into smooth muscle cells". Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/direct-reprogramming-of-fibroblasts-into-smooth-muscle-cells(d0feb08f-4d4a-4ded-a2b3-00e41c575cec).html.
Texto completoMcGinley, Susan. "Matters of the Heart: Studying Heart Muscle Cells". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/622376.
Texto completoAddicks, Gregory Charles. "Epigenetic Regulation of Muscle Stem and Progenitor Cells". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37112.
Texto completoMiller, Zachary Dalton. "Tensile Properties of Single Vaginal Smooth Muscle Cells". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83567.
Texto completoMaster of Science
Wang, Xiuyu. "Contractility-induced morphological transitions in smooth muscle cells". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST031.
Texto completoHeart attacks and strokes are the leading cause of mortality worldwide. Restenosis and thrombosis are among the most common complications of atherosclerosis treatment. Study shows that the extent of damage induced by endovascular devices is significantly higher for a rigid arterial wall than for a soft wall. The smooth muscle cell investigations demonstrate that upon reaching a critical density, these cells can spontaneously transition from flat cell sheets to three-dimensional spheroid-like clusters. The description of the physical mechanisms governing the spontaneous emergence of these intriguing 3-D clusters offers insight into smooth muscle cell-related disorders
Kerr, Tovah Briana. "Discovery and characterization of a novel myostatin in zebrafish". Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Summer2005/T%5FKERR%5F080505.pdf.
Texto completoScharner, Juergen. "Defective adult muscle satellite cells in Zmpste24 deficient mice". Thesis, Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508269.
Texto completoRichards-Malcolm, Sonia Angela. "THE ROLE OF STEM CELL ANTIGEN-1(Sca-1) IN MUSCLE AGING". UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/519.
Texto completoJagadesham, Vamshi Pulloori. "NK cell mediated lysis of vascular smooth muscle cells in abdominal aortic aneurysms". Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578645.
Texto completoYin, Xiaoke. "Protein changes associated with embryonic stem cell differentiation to vascular smooth muscle cells". Thesis, Queen Mary, University of London, 2006. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1764.
Texto completoWang, Ying. "Phenotypic modulations of cultured canine airway smooth muscle cells and growth-arrested cells". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32279.pdf.
Texto completoParris, James Joseph. "Isolation and characterisation of muscle satellite cells from differentiating human embryonic stem cells". Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1227.
Texto completoYang, Chian. "Derivation of purified smooth muscle cells from mouse induced pluripotent stem (iPS) cells". Thesis, Boston University, 2013. https://hdl.handle.net/2144/12250.
Texto completoCardiac and vascular disease syndromes and abnormalities have long been the leading causes of death in the United States, but the cause of congenital defects remain unclear due to the lack of appropriate model systems for scientific investigation. Moreover, the predominance of cardiovascular disease has stimulated scientists to focus on developing tissue-engineered blood vessels (TEBV) for vascular reconstruction and replacement. Major challenges remain in generating large amounts of epithelial cells (EC) and vascular smooth muscle cells (VSMC) for vascular reconstruction and in reducing the immunoresponse in patients after replacement. To address both issues of disease model generation and vascular tissue engineering, we can use induced pluripotent stem (iPS) cells discovered by Shinya Yamanaka in 2006: iPS cells generated from adult tissue and organs through the forced expression of two to four transcription factors are phenotypically indistinguishable from embryonic stem (ES) cells. First, by creating iPS from cardiovascular patients, we can generate patient-specific cell lines for scientific research investigation (i.e. elucidate molecular mechanisms and potential drug targets). Second, EC and VSMC derived from patient-specific iPS cell lines can be used for vascular reconstruction with cells of the patient's own genetic background, which should overcome many of the immunological limitations that currently impede vascular replacement (i.e. provide therapeutic interventions). The goal of this project is to study the differentiation capacity of iPS cells into smooth muscle cells (SMC). This project aims to develop a protocol that can maximize the derivation of purified smooth muscle cells from mouse induced pluripotent stem (iPS) cells through three linear developmental stages: induction of a posterior primitive- streak (PS) like population, formation of Flk1+ mesoderm, and induction of smooth muscle cells. Low dosage of Activin A and Wnt was used to differentiate iPS into a PS-like population, while the administration of BMP4 differentiates the cells to mesoderm via a posterior PS intermediate. Smooth muscle cells were induced from mesoderm by the addition of platelet-derived growth factor (PDGF-BB) and transforming growth factor b (TGF-β). The linear developmental progression from PS formation through mesoderm induction to smooth muscle cells were tracked by RT-qPCR and FACS for the expression of genes indicative of each individual stage, Flk1, and SMαA respectively. The results of this project can be used as a basis for in vitro derivation of purified mammalian smooth muscle cells from a mouse model system that can be further modified. Moreover, the differentiated SMCs can be further used in cell sheet construction as vascular patches for drug testing.
Thumiah-Mootoo, Madhavee. "The Role of Mitophagy in Muscle Stem Cell Fate and Function During Muscle Regeneration". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42239.
Texto completoWhyte, Claire Susan. "The effect of DHA and EPA on fibrosis-related factors in vascular cells". Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted access until May 19, 2010, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25877.
Texto completoBaudry, Stéphane. "Contribution à l'étude de la potentialisation de post-activation et de ses implications fonctionnelles chez l'homme". Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210743.
Texto completoHan, Chih-Lu. "The origin of vascular smooth muscle cells in atherogenesis /". [St. Lucia, Qld.], 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16306.pdf.
Texto completo廖寶韶 y Po-shiu Jackie Liu. "Effects of flavonoids on proliferation of breast cancer cells and vascular smooth muscle cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B45011394.
Texto completoStevenson, Meredith J. Fay William P. "Expression of adiponectin receptors by vascular smooth muscle cells". Diss., Columbia, Mo. : University of Missouri-Columbia, 2009. http://hdl.handle.net/10355/5370.
Texto completoPapaefthymiou, Aikaterini. "Role of the Srf transcription factor in adult muscle stem cells". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB120/document.
Texto completoThe adult skeletal muscle is a high plastic tissue as it adapts its size upon overload and it is capable of regeneration upon muscle lesion. The skeletal muscle is composed of a specialized syncytium, the myofiber, which is the functional unit of the muscle and a small population of myogenic progenitors, residing adjacent to the myofibers, termed as satellite cells (SCs). SCs are the muscle-specific stem cells which endow the skeletal muscle with its remarkable capacity to repair and to maintain homeostasis during muscle turnover. In resting adult muscles, SCs are quiescent but they activate upon exposure to stimuli. The activated SCs (myoblasts) proliferate extensively and subsequently differentiate and fuse between them or pre-existing myofibers, a series of cellular events called myogenesis. In parallel to the myogenesis, a reserve population of SCs escapes the myogenic program and self-renews to replenish the SC pool. The current project aims to further characterize the signalling pathways involved in SC functions during muscle regeneration and compensatory hypertrophy (CH). Srf is a muscle-enriched transcription factor with Srf-target genes implicated in cell proliferation, differentiation (sarcomeric proteins), adhesion, migration and cellular cytoskeleton. Studies in C2C12 mouse myogenic cell line showed that Srf loss prevent the myoblast proliferation and differentiation by down-regulating the expression of the myogenic determinant MyoD gene. We used a genetic murine model for adult SC-specific Srf-loss in order to conduct in vivo and ex vivo studies for the Srf role in SCs. Compensatory hypertrophy and regeneration are the two means by which SCs were recruited. We show that loss of Srf in SCs affects the regeneration process and the CH suggesting the Srf role in the SC fate. Srf-depleted SCs display probably no defect in their proliferation and differentiation but reduced capacity in motility and fusion. Transcriptomic analysis revealed altered actin cytoskeleton and signalling. Srf-depleted SCs show reduced actin expression and altered actin cytoskeleton. Rescue of actin expression in Srf-depleted SCs partially restored the cytoskeleton organization and the fusion process. Interestingly by actin overexpression only the heterotypic/asymmetric fusion was established but not the homotypic/symmetric fusion. Therefore actin overexpression restored the hypertrophic growth in the CH (in vivo model of heterotypic fusion) but failed to do so in the regeneration (in vivo model of homotypic fusion). This study contributed to the in vivo investigation of the Srf mechanistic role in adult SCs and underlined the importance of actin cytoskeleton maintenance in the fusion of myogenic cells
Piccoli, Martina. "Mouse amniotic fluid stem cells are able to differentiate into satellite cells replenishing the depauperated muscle stem cell niche". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423564.
Texto completoIntroduzione: Negli ultimi anni lo studio delle cellule staminali ha suscitato molto interesse, sia per il grande potenziale di queste cellule nelle terapie e applicazioni cliniche, sia come modello di studio in vitro per diversi tipi di malattie. In particolare, le cellule staminali embrionali hanno una elevata capacità proliferativa e di differenziazione, ma il loro utilizzo è ancora associato a problematiche etiche. Anche le cellule staminali adulte possiedono grandi potenzialità differenziative sia in vitro che in vivo, tuttavia il loro utilizzo è limitato in quanto difficili da isolare ed espandere, soprattutto in ambito clinico. In questo scenario sarebbe vantaggioso poter ottenere una popolazione di cellule con elevata capacità di proliferazione e differenziazione, senza dover affrontare però problemi di tipo etico. Nel 2007 il nostro gruppo ha isolato una popolazione di cellule staminali dal liquido amniotico (cellule AFS), utilizzando come marcatore il recettore c-Kit. Queste cellule hanno capacità clonogenica e possono essere dirette a differenziare in una vasta gamma di tipi cellulari appartenenti a tutti e tre i foglietti germinativi. Obiettivo: Questo lavoro mira a caratterizzare il potenziale miogenico delle cellule staminali del liquido amniotico di topo utilizzando un modello murino di atrofia spinale muscolare. In particolare è volto ad analizzare la capacità delle cellule AFS di dare origine a cellule staminali muscolari e colonizzare la nicchia staminale del muscolo scheletrico. Materiali e Metodi: Le cellule AFS sono state ottenute mediante amniocentesi e selezionate per la positività al marcatore c-kit con metodo immmunomagnetico. Appena isolate le cellule AFS sono state analizzate per l'espressione di diversi marcatori (CD90, CD45, CD44, CD34, CD31, Flk1, SCA1, CD105) tramite citometria a flusso; inoltre, attraverso qRT-PCR è stata analizzata l'espressione di Oct4, Sox2, c-Myc, Klf4 e Sca-1 delle cellule AFS isolate a diversi stadi embrionali. Per la terapia di topi transgenici HSA-Cre, SmnF7/F7, le cellule AFS GFP+ sono state iniettate per via sistemica attraverso la vena caudale; gli animali sono stati poi sacrificati a uno e a quindici mesi dopo il trapianto. Sono stati osservati e analizzati alcuni parametri clinici per valutare l’effetto del trapianto cellulare. Diversi muscoli sono stati raccolti ed analizzati con ematossilina e eosina, tricromica di Masson e mediante immunofluorescenza con anticorpi anti-GFP e anti-distrofina. Per dimostrare la capacità delle cellule AFS di colonizzare la nicchia staminale del muscolo, sono state eseguite delle immunofluorescenze per i marcatori specifici delle cellule satelliti e sono stati eseguiti dei trapianti secondari. Il potenziale miogenico delle cellule AFS è stato valutato anche con trapianto dopo espansione in vitro. Risultati: Il numero medio di cellule AFS presenti nel liquido amniotico varia nel corso della gestazione murina; all’età di 12.5 giorni queste cellule sono circa l’1% del totale ed esprimono marcatori ematopoietici (CD45, CD34, SCA1), marcatori mesenchimali (CD90, CD105) unitamente a Flk1, CD31 e CD44. L’analisi di espressione genica ha dimostrato che le cellule AFS esprimono a bassi livelli Oct4 e Sox2 e alti livelli di c-Myc e Klf4, mentre, nonostante la composizione mista di questa popolazione, non è stata rilevata espressione di marcatori o fattori di trascrizione tipici dei precursori muscolari. I topi HSA-Cre, SmnF7/F7 mediamente muoiono all'età di 10 mesi e durante il corso della loro vita mostrano evidenti complicazioni cliniche come una pronunciata cifosi e atrofia a livello muscolare. Dopo il trapianto con cellule AFS GFP+ o con cellule del midollo osseo, il tasso di sopravvivenza di questi animali aumenta rispettivamente del 75% e 50%. Gli animali trattati con cellule AFS hanno recuperato più del 75% della forza rispetto agli animali non trattati. Un mese dopo il trapianto, i muscoli di topi trattati con cellule AFS presentano il 37% di fibre GFP+, un numero molto basso di miofibre rigeneranti (< 1%) ed una normale espressione di distrofina. Quindici mesi dopo il trapianto, gli animali trattati con cellule del midollo osseo mostrano un elevato numero di fibre centro nucleate, un’importante infiltrazione di tessuto interstiziale e nessuna miofibra GFP+, mentre i topi trattati con cellule AFS hanno un fenotipo molto simile a quello di topi sani della stessa età, e il 58% delle miofibre è GFP+. Risultati simili sono stati ottenuti trattando lo stesso modello animale con cellule AFS dopo espansione in cultura. Discussione: Le cellule AFS isolate dal liquido amniotico di topo sono una popolazione eterogenea; queste cellule esprimono marcatori mesenchimali, ematopoietici e marcatori endoteliali. Va evidenziato che, nonostante la composizione mista di questa popolazione staminale, non esistono precursori muscolari al suo interno, e quindi qualunque differenziamento in senso muscolare di queste cellule è dovuto ad una differenziazione delle cellule AFS e non ad una maturazione di cellule già pre-commited. Quando vengono iniettate in un modello di atrofia muscolare, le cellule AFS mostrano un grande potenziale miogenico, anche a lungo termine, dimostrandosi una interessante fonte cellulare per scopi terapeutici. Queste cellule infatti sono state in grado di differenziare in cellule satelliti localizzandosi nella nicchia delle cellule staminali muscolari ed esprimendo Pax7, a7integrina e SM/c-2.6, tutti marcatori esclusivi delle cellule satelliti. Inoltre, le cellule AFS possono contribuire alla formazione di nuove miofibre anche dopo espansione in cultura, aumentando così lo spettro di possibili applicazioni terapeutiche.
Kaisto, T. (Tuula). "Special features of vesicle trafficking in skeletal muscle cells". Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514271521.
Texto completoMurtuza, Bari. "Interactions between skeletal muscle precursor cells and adult myocardium". Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/8427.
Texto completoNally, S. M. "Glucose-induced survival signalling in vascular smooth muscle cells". Thesis, Queen's University Belfast, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273221.
Texto completo