Artículos de revistas sobre el tema "Multitask regression"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Multitask regression".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bernard, Elsa, Yunlong Jiao, Erwan Scornet, Veronique Stoven, Thomas Walter y Jean-Philippe Vert. "Kernel Multitask Regression for Toxicogenetics". Molecular Informatics 36, n.º 10 (26 de septiembre de 2017): 1700053. http://dx.doi.org/10.1002/minf.201700053.
Texto completoXin Gu, Fu-Lai Chung, Hisao Ishibuchi y Shitong Wang. "Multitask Coupled Logistic Regression and its Fast Implementation for Large Multitask Datasets". IEEE Transactions on Cybernetics 45, n.º 9 (septiembre de 2015): 1953–66. http://dx.doi.org/10.1109/tcyb.2014.2362771.
Texto completoTam, Clara M., Dong Zhang, Bo Chen, Terry Peters y Shuo Li. "Holistic multitask regression network for multiapplication shape regression segmentation". Medical Image Analysis 65 (octubre de 2020): 101783. http://dx.doi.org/10.1016/j.media.2020.101783.
Texto completoXu, Yong-Li, Di-Rong Chen y Han-Xiong Li. "Least Square Regularized Regression for Multitask Learning". Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/715275.
Texto completoFan, Jianqing, Lingzhou Xue y Hui Zou. "Multitask Quantile Regression Under the Transnormal Model". Journal of the American Statistical Association 111, n.º 516 (1 de octubre de 2016): 1726–35. http://dx.doi.org/10.1080/01621459.2015.1113973.
Texto completoGoncalves, Andre, Priyadip Ray, Braden Soper, David Widemann, Mari Nygård, Jan F. Nygård y Ana Paula Sales. "Bayesian multitask learning regression for heterogeneous patient cohorts". Journal of Biomedical Informatics: X 4 (diciembre de 2019): 100059. http://dx.doi.org/10.1016/j.yjbinx.2019.100059.
Texto completoZhang, Linjuan, Jiaqi Shi, Lili Wang y Changqing Xu. "Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System". Entropy 22, n.º 12 (30 de noviembre de 2020): 1355. http://dx.doi.org/10.3390/e22121355.
Texto completoSchwab, David, Puneet Singla y Sean O’Rourke. "Angles-Only Initial Orbit Determination via Multivariate Gaussian Process Regression". Electronics 11, n.º 4 (15 de febrero de 2022): 588. http://dx.doi.org/10.3390/electronics11040588.
Texto completoZhang, Heng-Chang, Qing Wu, Fei-Yan Li y Hong Li. "Multitask Learning Based on Least Squares Support Vector Regression for Stock Forecast". Axioms 11, n.º 6 (15 de junio de 2022): 292. http://dx.doi.org/10.3390/axioms11060292.
Texto completoRuiz, Carlos, Carlos M. Alaíz y José R. Dorronsoro. "Multitask Support Vector Regression for Solar and Wind Energy Prediction". Energies 13, n.º 23 (30 de noviembre de 2020): 6308. http://dx.doi.org/10.3390/en13236308.
Texto completoMajumdar, Subhabrata y Snigdhansu Chatterjee. "Non-convex penalized multitask regression using data depth-based penalties". Stat 7, n.º 1 (2018): e174. http://dx.doi.org/10.1002/sta4.174.
Texto completoLi, Yi y A. Adam Ding. "Double‐structured sparse multitask regression with application of statistical downscaling". Environmetrics 30, n.º 4 (22 de octubre de 2018): e2534. http://dx.doi.org/10.1002/env.2534.
Texto completoShi, Meng, Yu Zheng, Youzhen Wu y Quansheng Ren. "Multitask Attention-Based Neural Network for Intraoperative Hypotension Prediction". Bioengineering 10, n.º 9 (31 de agosto de 2023): 1026. http://dx.doi.org/10.3390/bioengineering10091026.
Texto completoRosli, Mohd Shafie, Nor Shela Saleh, Baharuddin Aris, Maizah Hura Ahmad y Shaharuddin Md. Salleh. "Ubiquitous Hub for Digital Natives". International Journal of Emerging Technologies in Learning (iJET) 11, n.º 02 (23 de febrero de 2016): 29. http://dx.doi.org/10.3991/ijet.v11i02.4993.
Texto completoHuang, Xiaoying, Yun Tian, Shifeng Zhao, Tao Liu, Wei Wang y Qingjun Wang. "Direct full quantification of the left ventricle via multitask regression and classification". Applied Intelligence 51, n.º 8 (15 de enero de 2021): 5745–58. http://dx.doi.org/10.1007/s10489-020-02130-3.
Texto completoZhao, Sicheng, Hongxun Yao, Yue Gao, Rongrong Ji y Guiguang Ding. "Continuous Probability Distribution Prediction of Image Emotions via Multitask Shared Sparse Regression". IEEE Transactions on Multimedia 19, n.º 3 (marzo de 2017): 632–45. http://dx.doi.org/10.1109/tmm.2016.2617741.
Texto completoZhang, K., J. W. Gray y B. Parvin. "Sparse multitask regression for identifying common mechanism of response to therapeutic targets". Bioinformatics 26, n.º 12 (6 de junio de 2010): i97—i105. http://dx.doi.org/10.1093/bioinformatics/btq181.
Texto completoChen, Kai, Feng Huang y Heming Zhang. "Fan Rotation Speed Real-Time Optimizations of Continuous Annealing Line with Mechanism-Guided Multitask Classification and Regression Model". Journal of Physics: Conference Series 2575, n.º 1 (1 de agosto de 2023): 012010. http://dx.doi.org/10.1088/1742-6596/2575/1/012010.
Texto completoForouzannezhad, Parisa, Dominic Maes, Daniel S. Hippe, Phawis Thammasorn, Reza Iranzad, Jie Han, Chunyan Duan et al. "Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer". Cancers 14, n.º 5 (26 de febrero de 2022): 1228. http://dx.doi.org/10.3390/cancers14051228.
Texto completoWistuba-Hamprecht, Jacqueline, Bernhard Reuter, Rolf Fendel, Stephen L. Hoffman, Joseph J. Campo, Philip L. Felgner, Peter G. Kremsner, Benjamin Mordmüller y Nico Pfeifer. "Machine learning prediction of malaria vaccine efficacy based on antibody profiles". PLOS Computational Biology 20, n.º 6 (7 de junio de 2024): e1012131. http://dx.doi.org/10.1371/journal.pcbi.1012131.
Texto completoLi, Jiafeng, Lixia Cao y Guoliang Zhang. "Research on automatic matching of online mathematics courses and design of teaching activities based on multiobjective optimization algorithm". PeerJ Computer Science 9 (21 de agosto de 2023): e1501. http://dx.doi.org/10.7717/peerj-cs.1501.
Texto completoHe, Dan, David Kuhn y Laxmi Parida. "Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction". Bioinformatics 32, n.º 12 (15 de junio de 2016): i37—i43. http://dx.doi.org/10.1093/bioinformatics/btw249.
Texto completoXu, Beilei, Wencheng Wu, Lei Lin, Rachel Melnyk y Ahmed Ghazi. "Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning". Electronic Imaging 2021, n.º 3 (18 de junio de 2021): 109–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.3.mobmu-109.
Texto completoLewin, Collin, Erin Kara, Dan Wilkins, Guglielmo Mastroserio, Javier A. García, Rachel C. Zhang, William N. Alston et al. "X-Ray Reverberation Mapping of Ark 564 Using Gaussian Process Regression". Astrophysical Journal 939, n.º 2 (1 de noviembre de 2022): 109. http://dx.doi.org/10.3847/1538-4357/ac978f.
Texto completoNing, Shuluo y Hyunsoo Yoon. "A New Model for Building Energy Modeling and Management Using Predictive Analytics: Partitioned Hierarchical Multitask Regression (PHMR)". Indoor Air 2024 (11 de marzo de 2024): 1–11. http://dx.doi.org/10.1155/2024/5595459.
Texto completoSu, Zhibin, Shige Lin, Luyue Zhang, Yiming Feng y Wei Jiang. "Multitask Learning-Based Affective Prediction for Videos of Films and TV Scenes". Applied Sciences 14, n.º 11 (22 de mayo de 2024): 4391. http://dx.doi.org/10.3390/app14114391.
Texto completoZhang, Heng-Chang, Qing Wu y Fei-Yan Li. "Application of online multitask learning based on least squares support vector regression in the financial market". Applied Soft Computing 121 (mayo de 2022): 108754. http://dx.doi.org/10.1016/j.asoc.2022.108754.
Texto completoLin, Zhaozhou, Qiao Zhang, Shengyun Dai y Xiaoyan Gao. "Discovering Temporal Patterns in Longitudinal Nontargeted Metabolomics Data via Group and Nuclear Norm Regularized Multivariate Regression". Metabolites 10, n.º 1 (13 de enero de 2020): 33. http://dx.doi.org/10.3390/metabo10010033.
Texto completoHong, Danfeng, Naoto Yokoya, Jocelyn Chanussot, Jian Xu y Xiao Xiang Zhu. "Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction". ISPRS Journal of Photogrammetry and Remote Sensing 158 (diciembre de 2019): 35–49. http://dx.doi.org/10.1016/j.isprsjprs.2019.09.008.
Texto completoDaniels, John, Pau Herrero y Pantelis Georgiou. "A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems". Sensors 22, n.º 2 (8 de enero de 2022): 466. http://dx.doi.org/10.3390/s22020466.
Texto completoPrzybyła, Piotr, Austin J. Brockmeier y Sophia Ananiadou. "Quantifying risk factors in medical reports with a context-aware linear model". Journal of the American Medical Informatics Association 26, n.º 6 (6 de marzo de 2019): 537–46. http://dx.doi.org/10.1093/jamia/ocz004.
Texto completoLucena, André, Joana Guedes, Mário Vaz, Luiz Silva, Denisse Bustos y Erivaldo Souza. "Modeling Energy Expenditure Estimation in Occupational Context by Actigraphy: A Multi Regression Mixed-Effects Model". International Journal of Environmental Research and Public Health 18, n.º 19 (3 de octubre de 2021): 10419. http://dx.doi.org/10.3390/ijerph181910419.
Texto completoWang, Shaofeng, Shuang Liang, Qiao Chang, Li Zhang, Beiwen Gong, Yuxing Bai, Feifei Zuo, Yajie Wang, Xianju Xie y Yu Gu. "STSN-Net: Simultaneous Tooth Segmentation and Numbering Method in Crowded Environments with Deep Learning". Diagnostics 14, n.º 5 (26 de febrero de 2024): 497. http://dx.doi.org/10.3390/diagnostics14050497.
Texto completoAlarfaj, Abeer Abdulaziz y Hanan Ahmed Hosni Mahmoud. "Feature Fusion Deep Learning Model for Defects Prediction in Crystal Structures". Crystals 12, n.º 9 (19 de septiembre de 2022): 1324. http://dx.doi.org/10.3390/cryst12091324.
Texto completoKumaresan, M., M. Senthil Kumar y Nehal Muthukumar. "Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning". Mathematical Biosciences and Engineering 19, n.º 10 (2022): 9983–10005. http://dx.doi.org/10.3934/mbe.2022466.
Texto completoZhao, Chengqian, Dengwang Li, Cheng Feng y Shuo Li. "OF-UMRN: Uncertainty-guided multitask regression network aided by optical flow for fully automated comprehensive analysis of carotid artery". Medical Image Analysis 70 (mayo de 2021): 101982. http://dx.doi.org/10.1016/j.media.2021.101982.
Texto completoLiu, Xiaoli, Peng Cao, Jinzhu Yang y Dazhe Zhao. "Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer’s Disease". Computational and Mathematical Methods in Medicine 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7429782.
Texto completoLafond, Daniel, Benoît Roberge-Vallières, François Vachon y Sébastien Tremblay. "Judgment Analysis in a Dynamic Multitask Environment: Capturing Nonlinear Policies Using Decision Trees". Journal of Cognitive Engineering and Decision Making 11, n.º 2 (9 de agosto de 2016): 122–35. http://dx.doi.org/10.1177/1555343416661889.
Texto completoZhang, Kun, Pengcheng Lin, Jing Pan, Peixia Xu, Xuechen Qiu, Danny Crookes, Liang Hua y Lin Wang. "End to End Multitask Joint Learning Model for Osteoporosis Classification in CT Images". Computational Intelligence and Neuroscience 2023 (16 de marzo de 2023): 1–18. http://dx.doi.org/10.1155/2023/3018320.
Texto completoWang, Hua, Feiping Nie, Heng Huang, Sungeun Kim, Kwangsik Nho, Shannon L. Risacher, Andrew J. Saykin y Li Shen. "Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort". Bioinformatics 28, n.º 2 (6 de diciembre de 2011): 229–37. http://dx.doi.org/10.1093/bioinformatics/btr649.
Texto completoMokhtaridoost, Milad, Philipp G. Maass y Mehmet Gönen. "Identifying Tissue- and Cohort-Specific RNA Regulatory Modules in Cancer Cells Using Multitask Learning". Cancers 14, n.º 19 (9 de octubre de 2022): 4939. http://dx.doi.org/10.3390/cancers14194939.
Texto completoXie, Qian, Ning Jin y Shanshan Lu. "Lightweight Football Motion Recognition and Intensity Analysis Using Low-Cost Wearable Sensors". Applied Bionics and Biomechanics 2023 (12 de julio de 2023): 1–10. http://dx.doi.org/10.1155/2023/2354728.
Texto completoMoon, Taewon, Woo-Joo Choi, Se-Hun Jang, Da-Seul Choi y Myung-Min Oh. "Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction". Horticulturae 8, n.º 12 (29 de noviembre de 2022): 1124. http://dx.doi.org/10.3390/horticulturae8121124.
Texto completoBae, Chul-Young, Bo-Seon Kim, Sun-Ha Jee, Jong-Hoon Lee y Ngoc-Dung Nguyen. "A Study on Survival Analysis Methods Using Neural Network to Prevent Cancers". Cancers 15, n.º 19 (27 de septiembre de 2023): 4757. http://dx.doi.org/10.3390/cancers15194757.
Texto completoXu, Hao, Panpan Zhu, Xiaobo Luo, Tianshou Xie y Liqiang Zhang. "Extracting Buildings from Remote Sensing Images Using a Multitask Encoder-Decoder Network with Boundary Refinement". Remote Sensing 14, n.º 3 (25 de enero de 2022): 564. http://dx.doi.org/10.3390/rs14030564.
Texto completoDu, Lei, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin y Li Shen. "Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification". Bioinformatics 36, Supplement_1 (1 de julio de 2020): i371—i379. http://dx.doi.org/10.1093/bioinformatics/btaa434.
Texto completoShin, Changho, Sunghwan Joo, Jaeryun Yim, Hyoseop Lee, Taesup Moon y Wonjong Rhee. "Subtask Gated Networks for Non-Intrusive Load Monitoring". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 1150–57. http://dx.doi.org/10.1609/aaai.v33i01.33011150.
Texto completoGui, Renzhou, Tongjie Chen y Han Nie. "Classification of Task-State fMRI Data Based on Circle-EMD and Machine Learning". Computational Intelligence and Neuroscience 2020 (1 de agosto de 2020): 1–10. http://dx.doi.org/10.1155/2020/7691294.
Texto completoZhan, Lili. "Classification Algorithm for Heterogeneous Network Data Streams Based on Big Data Active Learning". Journal of Applied Mathematics 2022 (21 de octubre de 2022): 1–10. http://dx.doi.org/10.1155/2022/2996725.
Texto completoWei, Xiaochen, Xiaolei Lv y Kaiyu Zhang. "Road Extraction in SAR Images Using Ordinal Regression and Road-Topology Loss". Remote Sensing 13, n.º 11 (25 de mayo de 2021): 2080. http://dx.doi.org/10.3390/rs13112080.
Texto completo