Tesis sobre el tema "Multiple statistical analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Multiple statistical analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Smith, Anna Lantz. "Statistical Methodology for Multiple Networks". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492720126432803.
Texto completoDI, BRISCO AGNESE MARIA. "Statistical Network Analysis: a Multiple Testing Approach". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/96090.
Texto completoLiu, Wei. "Analysis of power functions of multiple comparisons tests". Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235586.
Texto completoZain, Zakiyah. "Combining multiple survival endpoints within a single statistical analysis". Thesis, Lancaster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618302.
Texto completo李志傑 y Chi-kit Li. "The statistical analysis of multi-way and multiple compositions". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230672.
Texto completoLi, Chi-kit. "The statistical analysis of multi-way and multiple compositions /". [Hong Kong] : University of Hong Kong, 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12323652.
Texto completoNashimoto, Kane. "Multiple comparison techniques for order restricted models /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3144445.
Texto completoBianchini, Germán. "Wildland Fire Prediction based on Statistical Analysis of Multiple Solutions". Doctoral thesis, Universitat Autònoma de Barcelona, 2006. http://hdl.handle.net/10803/5762.
Texto completoUn caso particular donde los modelos resultan muy útiles es la predicción de la propagación de Incendios Forestales. Los incendios se han vuelto un gran peligro que cada año provoca grandes pérdidas desde el punto de vista ambiental, económico, social y humano. En particular, las estaciones secas y calurosas incrementan seriamente el riesgo de incendios en el área Mediterránea. Por lo tanto, el uso de modelos es relevante para estimar el riesgo de incendios y predecir el comportamiento de los mismos.
Sin embargo, en muchos casos, los modelos presentan una serie de limitaciones. Estas se relacionan con la necesidad de un gran número de parámetros de entrada. En muchos casos, tales parámetros presentan cierto grado de incertidumbre debido a la imposibilidad de medirlos en tiempo real, y deben ser estimados a partir de datos indirectas. Además, en muchos casos estos modelos no se pueden resolver analíticamente y deben ser calculados aplicando métodos numéricos que son una aproximación de la realidad.
Se han desarrollado diversos métodos basados en asimilación de datos para optimizar los parámetros de entrada. Comúnmente, estos métodos operan sobre un gran número de parámetros de entrada y, a través de optimización, se enfocan en hallar un único conjunto de parámetros que describa de la mejor forma posible el comportamiento previo. Por lo tanto, es de esperar que el mismo conjunto de valores pueda ser usado para describir el futuro inmediato.
Sin embargo, esta clase de predicción se basa en un solo conjunto de parámetros y, por lo que se explicó, debido a aquellos parámetros que presentan un comportamiento dinámico, los valores optimizados pueden no resultar adecuados para el siguiente paso.
El presente trabajo propone un método alternativo. Nuestro sistema, llamado Sistema Estadístico para la Gestión de Incendios Forestales, se basa en conceptos estadísticos. Su objetivo es hallar un patrón del comportamiento del incendio, independientemente de los valores de los parámetros. En este método, cada parámetro es representado mediante un rango de valores y una cardinalidad. Se generan todos los posibles escenarios considerando todas las posibles combinaciones de los valores de los parámetros de entrada, y entonces se evalúa la propagación para cada caso. Los resultados son agregados estadísticamente para determinar la probabilidad de que cada área se queme. Esta agregación se utiliza para predecir el área quemada en el siguiente paso.
Para validar nuestro método, usamos un conjunto de quemas reales prescritas. Además, comparamos nuestro método contra otros dos. Uno de estos dos métodos fue implementado para este trabajo: GLUE (Generalized Likelihood Uncertainty Estimation). Dicho método corresponde a una adaptación de un sistema hidrológico. El otro caso (Método Evolutivo) es un algoritmo genético previamente desarrollado e implementado también por nuestro equipo de investigación.
Los sistemas propuestos requieren un gran número de simulaciones, razón por la cual decidimos usar un esquema paralelo para implementarlos. Esta forma de trabajo difiere del esquema tradicional de teoría y experimentación, lo cual es la forma común de la ciencia y la ingeniería. El cómputo científico está en continua expansión, principalmente a través del análisis de modelos matemáticos implementados en computadores. Los científicos e ingenieros desarrollan programas de computador que modelan los sistemas bajo estudio. Esta metodología está creando una nueva rama de la ciencia basada en métodos computacionales, la cual crece de forma acelerada. Esta aproximación es llamada Ciencia Computacional.
In many different scientific areas, the use of models to represent the physical system has become a common strategy. These models receive some input parameters representing the particular conditions and provide an output representing the evolution of the system. Usually, these models are integrated in simulation tools that can be executed on a computer.
A particular case where models are very useful is the prediction of Forest Fire propagation. Forest fire is a very significant hazard that every year provokes huge looses from the environmental, economical, social and human point of view. Particularly dry and hot seasons seriously increase the risk of forest fires in the Mediterranean area. Therefore, the use of models is very relevant to estimate fire risk, and predict fire behavior.
However, in many cases models present a series of limitations. Usually, such limitations are due to the need of a large number of input parameters. In many cases such parameters present some uncertainty due to the impossibility to measure all of them in real time and must be estimated from indirect measurements. Moreover, in most cases these models cannot be solved analytically and must be solved applying numerical methods that are only an approach to reality (still without considering the limitations that present the translations of these solutions when they are carried out by means of computers).
Several methods based on data assimilation have been developed to optimize the input parameters. In general, these methods operate over a large number of input parameters, and, by mean of some kind of optimization, they focus on finding a unique parameter set that would describe the previous behavior in the best form. Therefore, it is hoped that the same set of values could be used to describe the immediate future.
However, this kind of prediction is based on a single value of parameters and, as it has been said above, for those parameters that present a dynamic behavior the new optimized values cannot be adequate for the next step.
The objective of this work is to propose an alternative method. Our method, called Statistical System for Forest Fire Management, is based on statistical concepts. Its goal is to find a pattern of the forest fire behavior, independently of the parameters values. In this method, each parameter is represented by a range of values with a particular cardinality for each one of them. All possible scenarios considering all possible combinations of input parameters values are generated and the propagation for each scenario is evaluated. All results are statically aggregated to determine the burning probability of each area. This aggregation is used to predict the burned area in the next step.
To validate our method, we use a set of real prescribed burnings. Furthermore, we compare our method against two other methods. One of these methods was implemented by us for this work: GLUE (Generalized Likelihood Uncertainty Estimation). It corresponds to an adaptation of a hydrological method. The other method (Evolutionary method) is a genetic algorithm previously developed and implemented by our research team.
The proposed system requires a large number of simulations, a reason why we decide to use a parallel-scheme to implement them. This way of working is different from traditional scheme of theory and experiment, which is the common form of science and engineering. The scientific computing approach is in continuous expansion, mainly through the analysis of mathematical models implemented on computers. Scientists and engineers develop computer programs that model the systems under study. This methodology is creating a new branch of science based on computational methods that is growing very fast. This approach is called Computational Science.
Miller, Christopher Ryan 'Red'. "Statistical analysis of wireless networks predicting performance in multiple environments /". Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FMiller.pdf.
Texto completoThesis Advisor(s): David Annis. "June 2006." Includes bibliographical references (p.57). Also available in print.
Miller, Christopher Ryan. "Statistical analysis of wireless networks predicting performance in multiple environments". Thesis, Monterey, California. Naval Postgraduate School, 2006. http://hdl.handle.net/10945/2817.
Texto completoRao, Youlan. "Statistical Analysis of Microarray Experiments in Pharmacogenomics". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1244756072.
Texto completoMerlotti, Alessandra. "DNA sequence analysis: a statistical characterization of dinucleotides interdistances across multiple organisms". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13518/.
Texto completoZHONG, WEI. "STATISTICAL APPROACHES TO ANALYZE CENSORED DATA WITH MULTIPLE DETECTION LIMITS". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130204124.
Texto completoLi, Xuan. "Statistical analysis and reduction of multiple access interference in MC-CDMA systems". Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/30352/1/Xuan_Li_Thesis.pdf.
Texto completoLi, Xuan. "Statistical analysis and reduction of multiple access interference in MC-CDMA systems". Queensland University of Technology, 2008. http://eprints.qut.edu.au/30352/.
Texto completoTao, Hui. "An Investigation of False Discovery Rates in Multiple Testing under Dependence". Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/TaoH2005.pdf.
Texto completoClaggett, Brian Lee. "Statistical Methods for Clinical Trials with Multiple Outcomes, HIV Surveillance, and Nonparametric Meta-Analysis". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10440.
Texto completoAn, Qian. "A Monte Carlo study of several alpha-adjustment procedures using a testing multiple hypotheses in factorial anova". Ohio : Ohio University, 2010. http://www.ohiolink.edu/etd/view.cgi?ohiou1269439475.
Texto completoCasadei, Francesco. "Statistical analysis of genetic and epigenetic features in cancer cells". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24388/.
Texto completoWang, Zhenrui. "Statistical Analysis of Operational Data for Manufacturing System Performance Improvement". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301673.
Texto completoHeeb, Thomas Gregory. "Examination of turbulent mixing with multiple second order chemical reactions by the statistical analysis technique /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267024995615.
Texto completoYazdani, Akram. "Statistical Approaches in Genome-Wide Association Studies". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423743.
Texto completoLo Studio di Associazione Genome-Wide, GWAS, tipicamente comprende centinaia di migliaia di polimorfismi a singolo nucleotide, SNPs, genotipizzati per pochi campioni. L'obiettivo di tale studio consiste nell'individuare le regioni cruciali SNPs e prevedere gli esiti di una variabile risposta. Dal momento che il numero di predittori è di gran lunga superiore al numero di campioni, non è possibile condurre l'analisi dei dati con metodi statistici classici. GWAS attuali, i metodi negli maggiormente utilizzati si basano sull'analisi a marcatore unico, che valuta indipendentemente l'associazione di ogni SNP con i tratti complessi. A causa della bassa potenza dell'analisi a marcatore unico nel rilevamento delle associazioni reali, l'analisi simultanea ha recentemente ottenuto più attenzione. I recenti metodi per l'analisi simultanea nel multidimensionale hanno una limitazione sulla disparità tra il numero di predittori e il numero di campioni. Pertanto, è necessario ridurre la dimensionalità dell'insieme di SNPs. Questa tesi fornisce una panoramica dell'analisi a marcatore singolo e dell'analisi simultanea, focalizzandosi su metodi Bayesiani. Vengono discussi i limiti di tali approcci in relazione ai GWAS, con riferimento alla letteratura recente e utilizzando studi di simulazione. Per superare tali problemi, si è cercato di ridurre la dimensione dell'insieme di SNPs con una tecnica a proiezione casuale. Poiché questo approccio non comporta miglioramenti nella accuratezza predittiva del modello, viene quindi proposto un approccio in due fasi, che risulta essere un metodo ibrido di analisi singola e simultanea. Tale approccio, completamente Bayesiano, seleziona gli SNPs più promettenti nella prima fase valutando l'impatto di ogni marcatore indipendentemente. Nella seconda fase, viene sviluppato un modello gerarchico Bayesiano per analizzare contemporaneamente l'impatto degli indicatori selezionati. Il modello che considera i campioni correlati pone una priori locale-globale ristretta sugli effetti dei marcatori. Tale prior riduce a zero gli effetti piccoli, mentre mantiene gli effetti più grandi relativamente grandi. Le priori specificate sugli effetti dei marcatori sono rappresentazioni gerarchiche della distribuzione Pareto doppia; queste a priori migliorano le prestazioni predittive del modello. Infine, nella tesi vengono riportati i risultati dell'analisi su dati reali di SNP basate sullo studio a marcatore singolo e sul nuovo approccio a due stadi.
Chou, Shih-Hsiung. "Quality engineering applications on single and multiple nonlinear profiles". Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17214.
Texto completoDepartment of Industrial and Manufacturing Systems Engineering
Shing I. Chang
Profile analysis has drawn attention in quality engineering applications due to the growing use of sensors and information technologies. Unlike the conventional quality characteristics of interest, a profile is formed functionally dependent on one or more explanatory variables. A single profile may contain hundred or thousand data points. The conventional charting tools cannot handle such high dimensional datasets. In this dissertation, six unsolved issues are investigated. First, Chang and Yadama’s method (2010) shows competitive results in nonlinear profile monitoring. However, the effectiveness of removing noise from given nonlinear profile by using B-splines fitting with and without wavelet transformation is unclear. Second, many researches dealt with profile analysis problem considering whether profile shape change only or variance change only. Those methods cannot identify whether the process is out-of-control due to mean or variance shift. Third, methods dealing with detecting profile shape change always assume that a gold standard profile exists. The existing profile shape change detecting methods are hard to be implemented directly. Fourth, multiple nonlinear profiles situation may exist in real world applications, so that conventional single profile analysis methods may result in high false alarm rate when dealing multiple profile scenario. Fifth, Multiple nonlinear profiles situation may be also happened in designs of experiment. In a conventional experimental design, the response variable is usually considered a single value or a vector. The conventional approach cannot deal with when the format of the response factor as multiple nonlinear profiles. Finally, profile fault diagnosis is an important step after detecting out-of-control signal. However, current approaches will lead to large number of combinations if the number of sections is too large. The organization of this dissertation is as following. Chapter 1 introduce the profile analysis, current solutions, and challenges; Chapter 2 to Chapter 4 explore the unsolved challenges in single profile analysis; Chapter 5 and Chapter 6 investigate multiple profiles issues in profile monitoring analysis and experimental design method. Chapter 7 proposed a novel high-dimensional diagnosis control chart to diagnose the cause of out-of-control signal via visualization aid. Finally, Chapter 8 summarizes the achievements and contributions of this research.
Kuo, Yong-Fang. "Statistical Methods for Determining Single or Multiple Cupoints of Risk Factors in Survival Data Analysis". The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1394728637.
Texto completoKuo, Yong-Fang. "Statistical methods for determining single or multiple cutpoints of risk factors in survival data analysis /". The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487945015616444.
Texto completoYousef, Mohammed A. "Astrostatistics: Statistical Analysis of Solar Activity from 1939 to 2008". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1395405508.
Texto completoFiero, Mallorie H. "Statistical Approaches for Handling Missing Data in Cluster Randomized Trials". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612860.
Texto completoSultana, Mir Samia. "Toward better understanding of mechanical response of fabrics under multiple combined loading modes : experimental and statistical analysis". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54556.
Texto completoApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Chevallier, Juliette. "Statistical models and stochastic algorithms for the analysis of longitudinal Riemanian manifold valued data with multiple dynamic". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX059/document.
Texto completoBeyond transversal studies, temporal evolution of phenomena is a field of growing interest. For the purpose of understanding a phenomenon, it appears more suitable to compare the evolution of its markers over time than to do so at a given stage. The follow-up of neurodegenerative disorders is carried out via the monitoring of cognitive scores over time. The same applies for chemotherapy monitoring: rather than tumors aspect or size, oncologists asses that a given treatment is efficient from the moment it results in a decrease of tumor volume. The study of longitudinal data is not restricted to medical applications and proves successful in various fields of application such as computer vision, automatic detection of facial emotions, social sciences, etc.Mixed effects models have proved their efficiency in the study of longitudinal data sets, especially for medical purposes. Recent works (Schiratti et al., 2015, 2017) allowed the study of complex data, such as anatomical data. The underlying idea is to model the temporal progression of a given phenomenon by continuous trajectories in a space of measurements, which is assumed to be a Riemannian manifold. Then, both a group-representative trajectory and inter-individual variability are estimated. However, these works assume an unidirectional dynamic and fail to encompass situations like multiple sclerosis or chemotherapy monitoring. Indeed, such diseases follow a chronic course, with phases of worsening, stabilization and improvement, inducing changes in the global dynamic.The thesis is devoted to the development of methodological tools and algorithms suited for the analysis of longitudinal data arising from phenomena that undergo multiple dynamics and to apply them to chemotherapy monitoring. We propose a nonlinear mixed effects model which allows to estimate a representative piecewise-geodesic trajectory of the global progression and together with spacial and temporal inter-individual variability. Particular attention is paid to estimation of the correlation between the different phases of the evolution. This model provides a generic and coherent framework for studying longitudinal manifold-valued data.Estimation is formulated as a well-defined maximum a posteriori problem which we prove to be consistent under mild assumptions. Numerically, due to the non-linearity of the proposed model, the estimation of the parameters is performed through a stochastic version of the EM algorithm, namely the Markov chain Monte-Carlo stochastic approximation EM (MCMC-SAEM). The convergence of the SAEM algorithm toward local maxima of the observed likelihood has been proved and its numerical efficiency has been demonstrated. However, despite appealing features, the limit position of this algorithm can strongly depend on its starting position. To cope with this issue, we propose a new version of the SAEM in which we do not sample from the exact distribution in the expectation phase of the procedure. We first prove the convergence of this algorithm toward local maxima of the observed likelihood. Then, with the thought of the simulated annealing, we propose an instantiation of this general procedure to favor convergence toward global maxima: the tempering-SAEM
Manandhr-Shrestha, Nabin K. "Statistical Learning and Behrens Fisher Distribution Methods for Heteroscedastic Data in Microarray Analysis". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3513.
Texto completoMcCaskie, Pamela Ann. "Multiple-imputation approaches to haplotypic analysis of population-based data with applications to cardiovascular disease". University of Western Australia. School of Population Health, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0160.
Texto completoMetawe, Saad Abdel-Hamid. "The Prediction of Industrial Bond Rating Changes: a Multiple Discriminant Model Versus a Statistical Decomposition Model". Thesis, North Texas State University, 1985. https://digital.library.unt.edu/ark:/67531/metadc332370/.
Texto completoZhang, Jian. "Bayesian multiple hypotheses testing with quadratic criterion". Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0016/document.
Texto completoThe anomaly detection and localization problem can be treated as a multiple hypotheses testing (MHT) problem in the Bayesian framework. The Bayesian test with the 0−1 loss function is a standard solution for this problem, but the alternative hypotheses have quite different importance in practice. The 0−1 loss function does not reflect this fact while the quadratic loss function is more appropriate. The objective of the thesis is the design of a Bayesian test with the quadratic loss function and its asymptotic study. The construction of the test is made in two steps. In the first step, a Bayesian test with the quadratic loss function for the MHT problem without the null hypothesis is designed and the lower and upper bounds of the misclassification probabilities are calculated. The second step constructs a Bayesian test for the MHT problem with the null hypothesis. The lower and upper bounds of the false alarm probabilities, the missed detection probabilities as well as the misclassification probabilities are calculated. From these bounds, the asymptotic equivalence between the proposed test and the standard one with the 0-1 loss function is studied. A lot of simulation and an acoustic experiment have illustrated the effectiveness of the new statistical test
Merkle, Edgar C. "Bayesian estimation of factor analysis models with incomplete data". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126895149.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xi, 106 p.; also includes graphics. Includes bibliographical references (p. 103-106). Available online via OhioLINK's ETD Center
Herman, Joseph L. "Multiple sequence analysis in the presence of alignment uncertainty". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88a56d9f-a96e-48e3-b8dc-a73f3efc8472.
Texto completoGirka, Fabien. "Development of new statistical/ML methods for identifying multimodal factors related to the evolution of Multiple Sclerosis". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG075.
Texto completoStudying a given phenomenon under multiple views can reveal a more significant part of the mechanisms at stake rather than considering each view separately. In order to design a study under such a paradigm, measurements are usually acquired through different modalities resulting in multimodal/multiblock/multi-source data. One statistical framework suited explicitly for the joint analysis of such multi-source data is Regularized Generalized Canonical Correlation Analysis (RGCCA). RGCCA extracts canonical vectors and components that summarize the different views and their interactions. The contributions of this thesis are fourfold. (i) Improve and enrich the RGCCA R package to democratize its use. (ii) Extend the RGCCA framework to better handle tensor data by imposing a low-rank tensor factorization to the extracted canonical vectors. (iii) Propose and investigate simultaneous versions of RGCCA to get all canonical components at once. The proposed methods pave the way for new extensions of RGCCA. (iv) Use the developed tools and expertise to analyze multiple sclerosis and leukodystrophy data. A focus is made on identifying biomarkers differentiating between patients and healthy controls or between groups of patients
Bankefors, Johan. "Structural classification of Quillaja saponins by electrospray ionisation ion trap multiple-stage mass spectrometry in combination with multivariate analysis /". Uppsala : Department of Chemistry, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/10284550.pdf.
Texto completoMoutsianas, Loukas. "Imputation aided analysis of the association between autoimmune diseases and the MHC". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:aa570447-9e25-42de-b10d-9f445c0a094e.
Texto completoMadaris, Aaron T. "Characterization of Peripheral Lung Lesions by Statistical Image Processing of Endobronchial Ultrasound Images". Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1485517151147533.
Texto completoKonigorski, Stefan. "Development and application of new statistical methods for the analysis of multiple phenotypes to investigate genetic associations with cardiometabolic traits". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19132.
Texto completoIn recent years, the biotechnological advancements have allowed to investigate associations of genetic and molecular markers with multiple complex phenotypes in much greater depth. However, for the analysis of such complex datasets, available statistical methods often don’t yield valid inference. The first aim of this thesis is to develop two novel statistical methods for association analyses of genetic markers with multiple phenotypes, to implement them in a computationally efficient and robust manner so that they can be used for large-scale analyses, and evaluate them in comparison to existing statistical approaches under realistic scenarios. The first approach, called the copula-based joint analysis of multiple phenotypes (C-JAMP) method, allows investigating genetic associations with multiple traits in a joint copula model and is evaluated for genetic association analyses of rare genetic variants with quantitative traits. The second approach, called the causal inference using estimating equations (CIEE) method, allows estimating and testing direct genetic effects in directed acyclic graphs, and is evaluated for association analyses of common genetic variants with quantitative and time-to-event traits. The results of extensive simulation studies show that both approaches yield unbiased and efficient parameter estimators and can improve the power of association tests in comparison to existing approaches, which yield invalid inference in many scenarios. For the second goal of this thesis, to identify novel genetic and transcriptomic markers associated with cardiometabolic traits, C-JAMP and CIEE are applied in two large-scale studies including genome- and transcriptome-wide data. In the analyses, several novel candidate markers and genes are identified, which highlights the merit of developing, evaluating, and implementing novel statistical approaches. R packages are available for both methods and enable their application in future studies.
Heidt, Kaitlyn. "Comparison of Imputation Methods for Mixed Data Missing at Random". Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3559.
Texto completoKeeling, Kellie Bliss. "Developing Criteria for Extracting Principal Components and Assessing Multiple Significance Tests in Knowledge Discovery Applications". Thesis, University of North Texas, 1999. https://digital.library.unt.edu/ark:/67531/metadc2231/.
Texto completoSokrut, Nikolay. "The Integrated Distributed Hydrological Model, ECOFLOW- a Tool for Catchment Management". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237.
Texto completoHu, Zhiguang y 胡志光. "Binary latent variable modelling in the analysis of health data with multiple binary outcomes in an air pollution study in Hong Kong". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237058.
Texto completoDwyer, Michael G. "Development and application of novel algorithms for quantitative analysis of magnetic resonance imaging in multiple sclerosis". Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6298.
Texto completoSenteney, Michael H. "A Monte Carlo Study to Determine Sample Size for Multiple Comparison Procedures in ANOVA". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou160433478343909.
Texto completoOketch, Tobias O. "Performance of Imputation Algorithms on Artificially Produced Missing at Random Data". Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3217.
Texto completoHaynes, Michele Ann. "Flexible distributions and statistical models in ranking and selection procedures with applications". Thesis, Queensland University of Technology, 1998.
Buscar texto completoXi, Wenna. "Comparing the Statistical Power of Analysis of Covariance after Multiple Imputation and the Mixed Model in Testing the Treatment Effect for Pre-post Studies with Loss to Follow-up". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1403557167.
Texto completoKonigorski, Stefan [Verfasser], Marius [Gutachter] Kloft, Tobias [Gutachter] Pischon y Yildiz E. [Gutachter] Yilmaz. "Development and application of new statistical methods for the analysis of multiple phenotypes to investigate genetic associations with cardiometabolic traits / Stefan Konigorski ; Gutachter: Marius Kloft, Tobias Pischon, Yildiz E. Yilmaz". Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182542395/34.
Texto completo