Literatura académica sobre el tema "Multiple hearth furnace"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multiple hearth furnace".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multiple hearth furnace"
Ramı́rez, Mercedes, Rodolfo Haber, Vı́ctor Peña y Iván Rodrı́guez. "Fuzzy control of a multiple hearth furnace". Computers in Industry 54, n.º 1 (mayo de 2004): 105–13. http://dx.doi.org/10.1016/j.compind.2003.05.001.
Texto completoGomez, Fuentes J. V. y S. L. Jämsä-Jounela. "Control Strategy For A Multiple Hearth Furnace". IFAC-PapersOnLine 51, n.º 21 (2018): 189–94. http://dx.doi.org/10.1016/j.ifacol.2018.09.416.
Texto completoSapienza, Frank, Thomas Walsh, Karla Sangrey, Louis Barry, Jane Madden y Robert Gaudes. "Upgrade of UBWPAD's Multiple Hearth Furnace Sludge Incinerators". Proceedings of the Water Environment Federation 2007, n.º 3 (1 de enero de 2007): 880–92. http://dx.doi.org/10.2175/193864707787975642.
Texto completoKukharev, Alexsey, Vyacheslav Bilousov, Ecaterina Bilousov y Vitaly Bondarenko. "The Peculiarities of Convective Heat Transfer in Melt of a Multiple-Electrode Arc Furnace". Metals 9, n.º 11 (30 de octubre de 2019): 1174. http://dx.doi.org/10.3390/met9111174.
Texto completoShekhter, Leonid N., John E. Litz, Nimit M. Shah y Larry F. McHugh. "Thermodynamic Modelling of Molybdenite Roasting in a Multiple-Hearth Furnace". JOM 73, n.º 3 (19 de enero de 2021): 873–80. http://dx.doi.org/10.1007/s11837-020-04549-y.
Texto completoJämsä-Jounela, Sirkka-Liisa, Jose Valentin Gomez Fuentes, Jonathan Hearle, David Moseley y Alexander Smirnov. "Control strategy for a multiple hearth furnace in kaolin production". Control Engineering Practice 81 (diciembre de 2018): 18–27. http://dx.doi.org/10.1016/j.conengprac.2018.08.020.
Texto completoEskelinen, Aleksi, Alexey Zakharov, Sirkka-Liisa Jämsä-Jounela y Jonathan Hearle. "Dynamic modeling of a multiple hearth furnace for kaolin calcination". AIChE Journal 61, n.º 11 (26 de junio de 2015): 3683–98. http://dx.doi.org/10.1002/aic.14903.
Texto completoMininni, Giuseppe, Vincenzo Lotito, Roberto Passino y Ludovico Spinosa. "Influence of sludge cake concentration on the operating variables in incineration by different types of furnaces". Water Science and Technology 38, n.º 2 (1 de julio de 1998): 71–78. http://dx.doi.org/10.2166/wst.1998.0107.
Texto completoGomez Fuentes, J. V. y S. L. Jämsä-Jounela. "Simplified Mechanistic Model of the Multiple Hearth Furnace for Control Development". SNE Simulation Notes Europe 28, n.º 3 (septiembre de 2018): 97–100. http://dx.doi.org/10.11128/sne.28.sn.10426.
Texto completoHe, Hongsheng, Xiaofang Lv y Liying Huang. "Enhanced reduction of multiple layers carbon containing pellets in rotary hearth furnace". Metallurgical Research & Technology 120, n.º 4 (2023): 410. http://dx.doi.org/10.1051/metal/2023054.
Texto completoTesis sobre el tema "Multiple hearth furnace"
Lacombe, Elie. "Modélisation de la torréfaction de biomasse dans un four à soles multiples". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. https://thares.univ-grenoble-alpes.fr/2023GRALI086.pdf.
Texto completoIn the current energy context, biomass is an abundant and renewable resource that can be energetically recovered directly into heat or indirectly into gas or biofuels. Several thermochemical processes, such as gasification, pyrolysis or combustion can be implemented. However, biomass is characterized by a high humidity rate, a high grinding energy and a low energy density compared to coal. Torrefaction is a thermal pre-treatment between 200 and 300 °C under an inert atmosphere that improves biomass quality for energy uses. The torrefied biomass obtained is hydrophobic, dry and has a higher calorific value than raw biomass.Researchers have put a lot of effort into understanding the mechanisms of biomass degradation during torrefaction on small-scale experiments for various resources. Those works are useful for investigating chemical kinetics during torrefaction. However, there is a lack of studies on pilot and demonstration processes, which are limited for the most part to the analysis of the main product: the torrefied solid.By considering predominant phenomena influencing the thermal degradation of biomass, this work aims to model torrefaction yields in a multiple hearth furnace, which constitutes one of the reference technologies. To carry out this work, a kinetic study based on thermogravimetric measurements aims to validate the Ranzi Anca-Couce degradation scheme on two biomasses (oak and olive stones). Then, residence time distribution measurements in this furnace are achieved to estimate the influence of operating parameters on particle transport and identify the main mechanisms involved. The shaft speed of the furnace is the main parameter to control the residence time of the resource. The feed rate and the spacing between the teeth of an arm also have an important influence on the distribution of the residence time of particles. Particle transport in the furnace is dispersive. The particles' residence time is comprised between 50 % and 150 % of the average residence time. The last step consists of developing a complete thermal model of this furnace, integrating a chemical kinetic and a biomass transport model. Results are compared with experimental measurements achieved in a semi-industrial multiple hearth furnace processing between 50 and 70 kg/h of biomass at 250 to 300 °C. The model satisfactorily describes experimentally observable trends. Solid yield is correctly described by the model but the dry gas yield is underestimated by 34 %. The relative error on the higher calorific value of the solid product is less than 8 %. Experimentally, torrefaction temperature influences torrefaction yields and products as expected. More rarely reported in the literature, the impact of the moisture content of raw biomass on yields is also significant
Libros sobre el tema "Multiple hearth furnace"
Office, General Accounting. Air pollution: Emission sources regulated by multiple Clean Air Act provisions : report to the Chairman, Subcommittee on Clean Air, Wetlands, Private Property, and Nuclear Safety, Commmittee on Environment and Public Works, U.S. Senate. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): U.S. General Accounting Office, 2000.
Buscar texto completoCapítulos de libros sobre el tema "Multiple hearth furnace"
Spellman, Frank R. "Description of Multiple-Hearth Furnace". En Incinerating Biosolids, 59–103. CRC Press, 2020. http://dx.doi.org/10.1201/9781003075875-6.
Texto completoSpellman, Frank R. "Operation of Multiple-Hearth Furnace". En Incinerating Biosolids, 105–41. CRC Press, 2020. http://dx.doi.org/10.1201/9781003075875-7.
Texto completoSpellman, Frank R. "Preventive Maintenance Practices: Multiple-Hearth Furnace". En Incinerating Biosolids, 143–52. CRC Press, 2020. http://dx.doi.org/10.1201/9781003075875-8.
Texto completoActas de conferencias sobre el tema "Multiple hearth furnace"
Fuentes, Jose Valentin Gomez, Sirkka-Liisa Jamsa-Jounela, David Moseley y Tom Skuse. "Control strategy of a Multiple Hearth Furnace enhanced by machine learning algorithms". En 2019 4th Conference on Control and Fault Tolerant Systems (SysTol). IEEE, 2019. http://dx.doi.org/10.1109/systol.2019.8864797.
Texto completoWu, Puyuan, Weixiao Shang y Jun Chen. "Study of Flow Field of a Residential Gas Furnace With Particle Image Velocimetry". En ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83471.
Texto completoJian, Christopher Q. "CFD Modeling of a Fiberglass Furnace". En ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1664.
Texto completoMammoser, John H. y Aldo Jimenez. "Comparison of Temperature Measurements in Fire Test Furnaces Using Aspirated Thermocouples". En ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72548.
Texto completoHeuer, Volker, Klaus Löser y Bill Gornicki. "New Applications for Synchronized Vacuum Heat Treatment". En HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0631.
Texto completoAmritkar, Amit Ravindra, Danesh Tafti y Surya Deb. "Particle Scale Heat Transfer Analysis in Rotary Kiln". En ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58137.
Texto completoNunes, Edmundo M., Mohammad H. N. Naraghi, Hui Zhang y Vishwanath Prasad. "A Volume Radiation Heat Transfer Model for Czochralski Crystal Growth Processes". En ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1485.
Texto completoCrane, Nathan B. "Low-Cost Pyrometric Temperature Measurement in Concentrated Sunlight With Emissivity Determination". En ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54258.
Texto completoNakate, Prajakta, Domenico Lahaye, Cornelis Vuik y Marco Talice. "Systematic Development and Mesh Sensitivity Analysis of a Mathematical Model for an Anode Baking Furnace". En ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83131.
Texto completoRyu, Sang-gil, David J. Hwang, Eunpa Kim, Jae-hyuck Yoo y Costas P. Grigoropoulos. "Laser-Assisted on Demand Growth of Semiconducting Nanowires". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65696.
Texto completo