Artículos de revistas sobre el tema "Multiple Aggregation Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Multiple Aggregation Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
JIANG, JU, MOHAMED S. KAMEL y LEI CHEN. "AGGREGATION OF MULTIPLE REINFORCEMENT LEARNING ALGORITHMS". International Journal on Artificial Intelligence Tools 15, n.º 05 (octubre de 2006): 855–61. http://dx.doi.org/10.1142/s0218213006002990.
Texto completoAydin, Bahadir, Yavuz Selim Yilmaz Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao y Murat Demirbas. "Crowdsourcing for Multiple-Choice Question Answering". Proceedings of the AAAI Conference on Artificial Intelligence 28, n.º 2 (27 de julio de 2014): 2946–53. http://dx.doi.org/10.1609/aaai.v28i2.19016.
Texto completoSinnott, Jennifer A. y Tianxi Cai. "Pathway aggregation for survival prediction via multiple kernel learning". Statistics in Medicine 37, n.º 16 (17 de abril de 2018): 2501–15. http://dx.doi.org/10.1002/sim.7681.
Texto completoAzizi, Fityan y Wahyu Catur Wibowo. "Intermittent Demand Forecasting Using LSTM With Single and Multiple Aggregation". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, n.º 5 (2 de noviembre de 2022): 855–59. http://dx.doi.org/10.29207/resti.v6i5.4435.
Texto completoLiu, Wei, Xiaodong Yue, Yufei Chen y Thierry Denoeux. "Trusted Multi-View Deep Learning with Opinion Aggregation". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 7585–93. http://dx.doi.org/10.1609/aaai.v36i7.20724.
Texto completoWang, Zhiqiang, Xinyue Yu, Haoyu Wang y Peiyang Xue. "A federated learning scheme for hierarchical protection and multiple aggregation". Computers and Electrical Engineering 117 (julio de 2024): 109240. http://dx.doi.org/10.1016/j.compeleceng.2024.109240.
Texto completoLi, Shikun, Shiming Ge, Yingying Hua, Chunhui Zhang, Hao Wen, Tengfei Liu y Weiqiang Wang. "Coupled-View Deep Classifier Learning from Multiple Noisy Annotators". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 4667–74. http://dx.doi.org/10.1609/aaai.v34i04.5898.
Texto completoMansouri, Mohamad, Melek Önen, Wafa Ben Jaballah y Mauro Conti. "SoK: Secure Aggregation Based on Cryptographic Schemes for Federated Learning". Proceedings on Privacy Enhancing Technologies 2023, n.º 1 (enero de 2023): 140–57. http://dx.doi.org/10.56553/popets-2023-0009.
Texto completoLiu, Chang, Zhuocheng Zou, Yuan Miao y Jun Qiu. "Light field quality assessment based on aggregation learning of multiple visual features". Optics Express 30, n.º 21 (30 de septiembre de 2022): 38298. http://dx.doi.org/10.1364/oe.467754.
Texto completoPrice, Stanton R., Derek T. Anderson, Timothy C. Havens y Steven R. Price. "Kernel Matrix-Based Heuristic Multiple Kernel Learning". Mathematics 10, n.º 12 (11 de junio de 2022): 2026. http://dx.doi.org/10.3390/math10122026.
Texto completoTam, Prohim, Seungwoo Kang, Seyha Ros y Seokhoon Kim. "Enhancing QoS with LSTM-Based Prediction for Congestion-Aware Aggregation Scheduling in Edge Federated Learning". Electronics 12, n.º 17 (27 de agosto de 2023): 3615. http://dx.doi.org/10.3390/electronics12173615.
Texto completoBorghei, Benny B. y Thomas Magnusson. "Niche aggregation through cumulative learning: A study of multiple electric bus projects". Environmental Innovation and Societal Transitions 28 (septiembre de 2018): 108–21. http://dx.doi.org/10.1016/j.eist.2018.01.004.
Texto completoCarbonneau, Marc-Andre, Eric Granger y Ghyslain Gagnon. "Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems". IEEE Transactions on Neural Networks and Learning Systems 30, n.º 5 (mayo de 2019): 1441–51. http://dx.doi.org/10.1109/tnnls.2018.2869164.
Texto completoLiu, Fei, Zheng Xiong, Wei Yu, Jia Wu, Zheng Kong, Yunhang Ji, Suwei Xu y Mingtao Ji. "Efficient Federated Learning for Feature Aggregation with Heterogenous Edge Devices". Journal of Physics: Conference Series 2665, n.º 1 (1 de diciembre de 2023): 012007. http://dx.doi.org/10.1088/1742-6596/2665/1/012007.
Texto completoReiman, Derek, Ahmed Metwally, Jun Sun y Yang Dai. "Meta-Signer: Metagenomic Signature Identifier based onrank aggregation of features". F1000Research 10 (9 de marzo de 2021): 194. http://dx.doi.org/10.12688/f1000research.27384.1.
Texto completoAviv Segev, John Pomerat. "A Comparison of Methods for Neural Network Aggregation". Advances in Artificial Intelligence and Machine Learning 03, n.º 02 (2023): 1012–24. http://dx.doi.org/10.54364/aaiml.2023.1160.
Texto completoSo, Jinhyun, Ramy E. Ali, Başak Güler, Jiantao Jiao y A. Salman Avestimehr. "Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 9864–73. http://dx.doi.org/10.1609/aaai.v37i8.26177.
Texto completoKaltsounis, Anastasios, Evangelos Spiliotis y Vassilios Assimakopoulos. "Conditional Temporal Aggregation for Time Series Forecasting Using Feature-Based Meta-Learning". Algorithms 16, n.º 4 (12 de abril de 2023): 206. http://dx.doi.org/10.3390/a16040206.
Texto completoKim, Sunghun y Eunjee Lee. "A deep attention LSTM embedded aggregation network for multiple histopathological images". PLOS ONE 18, n.º 6 (29 de junio de 2023): e0287301. http://dx.doi.org/10.1371/journal.pone.0287301.
Texto completoFu, Fengjie, Dianhai Wang, Meng Sun, Rui Xie y Zhengyi Cai. "Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval". Sustainability 16, n.º 5 (22 de febrero de 2024): 1818. http://dx.doi.org/10.3390/su16051818.
Texto completoLi, Weisheng, Maolin He y Minghao Xiang. "Double-Stack Aggregation Network Using a Feature-Travel Strategy for Pansharpening". Remote Sensing 14, n.º 17 (27 de agosto de 2022): 4224. http://dx.doi.org/10.3390/rs14174224.
Texto completoZhang, Hesheng, Ping Zhang, Mingkai Hu, Muhua Liu y Jiechang Wang. "FedUB: Federated Learning Algorithm Based on Update Bias". Mathematics 12, n.º 10 (20 de mayo de 2024): 1601. http://dx.doi.org/10.3390/math12101601.
Texto completoLiu, Bowen y Qiang Tang. "Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation". Future Internet 16, n.º 4 (15 de abril de 2024): 133. http://dx.doi.org/10.3390/fi16040133.
Texto completoPapageorgiou, Konstantinos, Pramod K. Singh, Elpiniki Papageorgiou, Harpalsinh Chudasama, Dionysis Bochtis y George Stamoulis. "Fuzzy Cognitive Map-Based Sustainable Socio-Economic Development Planning for Rural Communities". Sustainability 12, n.º 1 (30 de diciembre de 2019): 305. http://dx.doi.org/10.3390/su12010305.
Texto completoWARDELL, DEAN C. y GILBERT L. PETERSON. "FUZZY STATE AGGREGATION AND POLICY HILL CLIMBING FOR STOCHASTIC ENVIRONMENTS". International Journal of Computational Intelligence and Applications 06, n.º 03 (septiembre de 2006): 413–28. http://dx.doi.org/10.1142/s1469026806001903.
Texto completoZhang, Chengdong, Keke Li, Shaoqing Wang, Bin Zhou, Lei Wang y Fuzhen Sun. "Learning Heterogeneous Graph Embedding with Metapath-Based Aggregation for Link Prediction". Mathematics 11, n.º 3 (21 de enero de 2023): 578. http://dx.doi.org/10.3390/math11030578.
Texto completoNakai, Tsunato, Ye Wang, Kota Yoshida y Takeshi Fujino. "SEDMA: Self-Distillation with Model Aggregation for Membership Privacy". Proceedings on Privacy Enhancing Technologies 2024, n.º 1 (enero de 2024): 494–508. http://dx.doi.org/10.56553/popets-2024-0029.
Texto completoGao, Yilin y Fengzhu Sun. "Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies". PLOS Computational Biology 19, n.º 10 (16 de octubre de 2023): e1010608. http://dx.doi.org/10.1371/journal.pcbi.1010608.
Texto completoBonawitz, Kallista, Peter Kairouz, Brendan McMahan y Daniel Ramage. "Federated Learning and Privacy". Queue 19, n.º 5 (31 de octubre de 2021): 87–114. http://dx.doi.org/10.1145/3494834.3500240.
Texto completoMu, Shengdong, Boyu Liu, Chaolung Lien y Nedjah Nadia. "Optimization of Personal Credit Evaluation Based on a Federated Deep Learning Model". Mathematics 11, n.º 21 (31 de octubre de 2023): 4499. http://dx.doi.org/10.3390/math11214499.
Texto completoWang, Yabin, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su y Xiaopeng Hong. "Isolation and Impartial Aggregation: A Paradigm of Incremental Learning without Interference". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 10209–17. http://dx.doi.org/10.1609/aaai.v37i8.26216.
Texto completoMbonu, Washington Enyinna, Carsten Maple y Gregory Epiphaniou. "An End-Process Blockchain-Based Secure Aggregation Mechanism Using Federated Machine Learning". Electronics 12, n.º 21 (5 de noviembre de 2023): 4543. http://dx.doi.org/10.3390/electronics12214543.
Texto completoPires, Jorge Manuel y Manuel Pérez Cota. "Metadata as an Aggregation Final Model in Learning Environments". International Journal of Technology Diffusion 7, n.º 4 (octubre de 2016): 36–59. http://dx.doi.org/10.4018/ijtd.2016100103.
Texto completoZhang, Yani, Huailin Zhao, Zuodong Duan, Liangjun Huang, Jiahao Deng y Qing Zhang. "Congested Crowd Counting via Adaptive Multi-Scale Context Learning". Sensors 21, n.º 11 (29 de mayo de 2021): 3777. http://dx.doi.org/10.3390/s21113777.
Texto completoLu, Yao, Keweiqi Wang y Erbao He. "Many-to-Many Data Aggregation Scheduling Based on Multi-Agent Learning for Multi-Channel WSN". Electronics 11, n.º 20 (18 de octubre de 2022): 3356. http://dx.doi.org/10.3390/electronics11203356.
Texto completoWang, Rong y Wei-Tek Tsai. "Asynchronous Federated Learning System Based on Permissioned Blockchains". Sensors 22, n.º 4 (21 de febrero de 2022): 1672. http://dx.doi.org/10.3390/s22041672.
Texto completoZhou, Chendi, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang Zhou, Huaiyu Dai y Dejing Dou. "Efficient Device Scheduling with Multi-Job Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 9 (28 de junio de 2022): 9971–79. http://dx.doi.org/10.1609/aaai.v36i9.21235.
Texto completoYang, Fangfang, Yanxu Liu, Linlin Xu, Kui Li, Panpan Hu y Jixing Chen. "Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications". Remote Sensing 12, n.º 6 (20 de marzo de 2020): 999. http://dx.doi.org/10.3390/rs12060999.
Texto completoJin, Xuan, Yuanzhi Yao y Nenghai Yu. "Efficient secure aggregation for privacy-preserving federated learning based on secret sharing". JUSTC 53, n.º 4 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0116.
Texto completoSpeck, David, André Biedenkapp, Frank Hutter, Robert Mattmüller y Marius Lindauer. "Learning Heuristic Selection with Dynamic Algorithm Configuration". Proceedings of the International Conference on Automated Planning and Scheduling 31 (17 de mayo de 2021): 597–605. http://dx.doi.org/10.1609/icaps.v31i1.16008.
Texto completoLi, Lu, Jiwei Qin y Jintao Luo. "A Blockchain-Based Federated-Learning Framework for Defense against Backdoor Attacks". Electronics 12, n.º 11 (1 de junio de 2023): 2500. http://dx.doi.org/10.3390/electronics12112500.
Texto completoMao, Axiu, Endai Huang, Haiming Gan y Kai Liu. "FedAAR: A Novel Federated Learning Framework for Animal Activity Recognition with Wearable Sensors". Animals 12, n.º 16 (21 de agosto de 2022): 2142. http://dx.doi.org/10.3390/ani12162142.
Texto completoLiu, Tong, Akash Venkatachalam, Pratik Sanjay Bongale y Christopher M. Homan. "Learning to Predict Population-Level Label Distributions". Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 7 (28 de octubre de 2019): 68–76. http://dx.doi.org/10.1609/hcomp.v7i1.5286.
Texto completoLi, Qingtie, Xuemei Wang y Shougang Ren. "A Privacy Robust Aggregation Method Based on Federated Learning in the IoT". Electronics 12, n.º 13 (5 de julio de 2023): 2951. http://dx.doi.org/10.3390/electronics12132951.
Texto completoWu, Xia, Lei Xu y Liehuang Zhu. "Local Differential Privacy-Based Federated Learning under Personalized Settings". Applied Sciences 13, n.º 7 (24 de marzo de 2023): 4168. http://dx.doi.org/10.3390/app13074168.
Texto completoWang, Mengdi, Anna Bodonhelyi, Efe Bozkir y Enkelejda Kasneci. "TurboSVM-FL: Boosting Federated Learning through SVM Aggregation for Lazy Clients". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de marzo de 2024): 15546–54. http://dx.doi.org/10.1609/aaai.v38i14.29481.
Texto completoPeng, Cheng, Ke Chen, Lidan Shou y Gang Chen. "CARAT: Contrastive Feature Reconstruction and Aggregation for Multi-Modal Multi-Label Emotion Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de marzo de 2024): 14581–89. http://dx.doi.org/10.1609/aaai.v38i13.29374.
Texto completoDjebrouni, Yasmine, Nawel Benarba, Ousmane Touat, Pasquale De Rosa, Sara Bouchenak, Angela Bonifati, Pascal Felber, Vania Marangozova y Valerio Schiavoni. "Bias Mitigation in Federated Learning for Edge Computing". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, n.º 4 (19 de diciembre de 2023): 1–35. http://dx.doi.org/10.1145/3631455.
Texto completoFallah, Mahdi, Parya Mohammadi, Mohammadreza NasiriFard y Pedram Salehpour. "Optimizing QoS Metrics for Software-Defined Networking in Federated Learning". Mobile Information Systems 2023 (9 de octubre de 2023): 1–10. http://dx.doi.org/10.1155/2023/3896267.
Texto completoWang, Shuohang, Yunshi Lan, Yi Tay, Jing Jiang y Jingjing Liu. "Multi-Level Head-Wise Match and Aggregation in Transformer for Textual Sequence Matching". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 9209–16. http://dx.doi.org/10.1609/aaai.v34i05.6458.
Texto completo