Literatura académica sobre el tema "Multiple Aggregation Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multiple Aggregation Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multiple Aggregation Learning"
JIANG, JU, MOHAMED S. KAMEL y LEI CHEN. "AGGREGATION OF MULTIPLE REINFORCEMENT LEARNING ALGORITHMS". International Journal on Artificial Intelligence Tools 15, n.º 05 (octubre de 2006): 855–61. http://dx.doi.org/10.1142/s0218213006002990.
Texto completoAydin, Bahadir, Yavuz Selim Yilmaz Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao y Murat Demirbas. "Crowdsourcing for Multiple-Choice Question Answering". Proceedings of the AAAI Conference on Artificial Intelligence 28, n.º 2 (27 de julio de 2014): 2946–53. http://dx.doi.org/10.1609/aaai.v28i2.19016.
Texto completoSinnott, Jennifer A. y Tianxi Cai. "Pathway aggregation for survival prediction via multiple kernel learning". Statistics in Medicine 37, n.º 16 (17 de abril de 2018): 2501–15. http://dx.doi.org/10.1002/sim.7681.
Texto completoAzizi, Fityan y Wahyu Catur Wibowo. "Intermittent Demand Forecasting Using LSTM With Single and Multiple Aggregation". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, n.º 5 (2 de noviembre de 2022): 855–59. http://dx.doi.org/10.29207/resti.v6i5.4435.
Texto completoLiu, Wei, Xiaodong Yue, Yufei Chen y Thierry Denoeux. "Trusted Multi-View Deep Learning with Opinion Aggregation". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 7585–93. http://dx.doi.org/10.1609/aaai.v36i7.20724.
Texto completoWang, Zhiqiang, Xinyue Yu, Haoyu Wang y Peiyang Xue. "A federated learning scheme for hierarchical protection and multiple aggregation". Computers and Electrical Engineering 117 (julio de 2024): 109240. http://dx.doi.org/10.1016/j.compeleceng.2024.109240.
Texto completoLi, Shikun, Shiming Ge, Yingying Hua, Chunhui Zhang, Hao Wen, Tengfei Liu y Weiqiang Wang. "Coupled-View Deep Classifier Learning from Multiple Noisy Annotators". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 4667–74. http://dx.doi.org/10.1609/aaai.v34i04.5898.
Texto completoMansouri, Mohamad, Melek Önen, Wafa Ben Jaballah y Mauro Conti. "SoK: Secure Aggregation Based on Cryptographic Schemes for Federated Learning". Proceedings on Privacy Enhancing Technologies 2023, n.º 1 (enero de 2023): 140–57. http://dx.doi.org/10.56553/popets-2023-0009.
Texto completoLiu, Chang, Zhuocheng Zou, Yuan Miao y Jun Qiu. "Light field quality assessment based on aggregation learning of multiple visual features". Optics Express 30, n.º 21 (30 de septiembre de 2022): 38298. http://dx.doi.org/10.1364/oe.467754.
Texto completoPrice, Stanton R., Derek T. Anderson, Timothy C. Havens y Steven R. Price. "Kernel Matrix-Based Heuristic Multiple Kernel Learning". Mathematics 10, n.º 12 (11 de junio de 2022): 2026. http://dx.doi.org/10.3390/math10122026.
Texto completoTesis sobre el tema "Multiple Aggregation Learning"
Cheung, Chi-Wai. "Probabilistic rank aggregation for multiple SVM ranking /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CSED%202009%20CHEUNG.
Texto completoTandon, Prateek. "Bayesian Aggregation of Evidence for Detection and Characterization of Patterns in Multiple Noisy Observations". Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/658.
Texto completoOrazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Texto completoMazari, Ahmed. "Apprentissage profond pour la reconnaissance d’actions en vidéos". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS171.
Texto completoNowadays, video contents are ubiquitous through the popular use of internet and smartphones, as well as social media. Many daily life applications such as video surveillance and video captioning, as well as scene understanding require sophisticated technologies to process video data. It becomes of crucial importance to develop automatic means to analyze and to interpret the large amount of available video data. In this thesis, we are interested in video action recognition, i.e. the problem of assigning action categories to sequences of videos. This can be seen as a key ingredient to build the next generation of vision systems. It is tackled with AI frameworks, mainly with ML and Deep ConvNets. Current ConvNets are increasingly deeper, data-hungrier and this makes their success tributary of the abundance of labeled training data. ConvNets also rely on (max or average) pooling which reduces dimensionality of output layers (and hence attenuates their sensitivity to the availability of labeled data); however, this process may dilute the information of upstream convolutional layers and thereby affect the discrimination power of the trained video representations, especially when the learned action categories are fine-grained
Jiang, Ju. "A Framework for Aggregation of Multiple Reinforcement Learning Algorithms". Thesis, 2007. http://hdl.handle.net/10012/2752.
Texto completoCapítulos de libros sobre el tema "Multiple Aggregation Learning"
Khan, Muhammad Irfan, Mojtaba Jafaritadi, Esa Alhoniemi, Elina Kontio y Suleiman A. Khan. "Adaptive Weight Aggregation in Federated Learning for Brain Tumor Segmentation". En Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 455–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09002-8_40.
Texto completoMächler, Leon, Ivan Ezhov, Suprosanna Shit y Johannes C. Paetzold. "FedPIDAvg: A PID Controller Inspired Aggregation Method for Federated Learning". En Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 209–17. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44153-0_20.
Texto completoKhan, Muhammad Irfan, Mohammad Ayyaz Azeem, Esa Alhoniemi, Elina Kontio, Suleiman A. Khan y Mojtaba Jafaritadi. "Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation". En Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 121–32. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44153-0_12.
Texto completoSingh, Gaurav. "A Local Score Strategy for Weight Aggregation in Federated Learning". En Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 133–41. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44153-0_13.
Texto completoWang, Yuan, Renuga Kanagavelu, Qingsong Wei, Yechao Yang y Yong Liu. "Model Aggregation for Federated Learning Considering Non-IID and Imbalanced Data Distribution". En Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 196–208. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44153-0_19.
Texto completoSandhofer, Catherine y Christina Schonberg. "Multiple Examples Support Children’s Word Learning: The Roles of Aggregation, Decontextualization, and Memory Dynamics". En Language and Concept Acquisition from Infancy Through Childhood, 159–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35594-4_8.
Texto completoChen, Yanjia, Ziwang Huang, Hejun Wu y Hao Cai. "Melanoma Classification with IoT Devices from Local and Global Aggregation by Multiple Instance Learning". En Lecture Notes in Electrical Engineering, 385–91. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0416-7_39.
Texto completoGharahighehi, Alireza, Celine Vens y Konstantinos Pliakos. "Multi-stakeholder News Recommendation Using Hypergraph Learning". En ECML PKDD 2020 Workshops, 531–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65965-3_36.
Texto completoAlharbi, Ebtisaam, Leandro Soriano Marcolino, Antonios Gouglidis y Qiang Ni. "Robust Federated Learning Method Against Data and Model Poisoning Attacks with Heterogeneous Data Distribution". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230257.
Texto completoKhanh, Phan Truong, Tran Thi Hong Ngoc y Sabyasachi Pramanik. "Engineering, Geology, Climate, and Socioeconomic Aspects' Implications on Machine Learning-Dependent Water Pipe Collapse Prediction". En Methodologies, Frameworks, and Applications of Machine Learning, 161–86. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1062-5.ch009.
Texto completoActas de conferencias sobre el tema "Multiple Aggregation Learning"
Jiang, Zoe L., Hui Guo, Yijian Pan, Yang Liu, Xuan Wang y Jun Zhang. "Secure Neural Network in Federated Learning with Model Aggregation under Multiple Keys". En 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 2021. http://dx.doi.org/10.1109/cscloud-edgecom52276.2021.00019.
Texto completoYoshida, Takeshi, Kazuki Uehara, Hidenori Sakanashi, Hirokazu Nosato y Masahiro Murakawa. "Multi-Scale Feature Aggregation Based Multiple Instance Learning for Pathological Image Classification". En 12th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0011615200003411.
Texto completoWang, Qianru, Qingyang Li, Bin Guo y Jiangtao Cui. "Efficient Federated Learning with Smooth Aggregation for Non-IID Data from Multiple Edges". En ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. http://dx.doi.org/10.1109/icassp48485.2024.10447506.
Texto completoZhang, Jianxin, Cunqiao Hou, Wen Zhu, Mingli Zhang, Ying Zou, Lizhi Zhang y Qiang Zhang. "Attention multiple instance learning with Transformer aggregation for breast cancer whole slide image classification". En 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9994848.
Texto completoGarcia Oliveira, Renata y Wouter Caarls. "Comparing Action Aggregation Strategies in Deep Reinforcement Learning with Continuous Action". En Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1547.
Texto completoWan, Wei, Shengshan Hu, jianrong Lu, Leo Yu Zhang, Hai Jin y Yuanyuan He. "Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/106.
Texto completoLi, Wei, Tianzhao Yang, Xiao Wu y Zhaoquan Yuan. "Learning Graph-based Residual Aggregation Network for Group Activity Recognition". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/154.
Texto completoGuruprasad, Kamalesh Kumar Mandakolathur, Gayatri Sunil Ambulkar y Geetha Nair. "Federated Learning for Seismic Data Denoising: Privacy-Preserving Paradigm". En International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23888-ms.
Texto completoLi, Zizhuo, Shihua Zhang y Jiayi Ma. "U-Match: Two-view Correspondence Learning with Hierarchy-aware Local Context Aggregation". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/130.
Texto completoHan, Zhizhong, Xiyang Wang, Chi Man Vong, Yu-Shen Liu, Matthias Zwicker y C. L. Philip Chen. "3DViewGraph: Learning Global Features for 3D Shapes from A Graph of Unordered Views with Attention". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/107.
Texto completoInformes sobre el tema "Multiple Aggregation Learning"
Daudelin, Francois, Lina Taing, Lucy Chen, Claudia Abreu Lopes, Adeniyi Francis Fagbamigbe y Hamid Mehmood. Mapping WASH-related disease risk: A review of risk concepts and methods. United Nations University Institute for Water, Environment and Health, diciembre de 2021. http://dx.doi.org/10.53328/uxuo4751.
Texto completo