Literatura académica sobre el tema "Multioutput regression"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multioutput regression".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multioutput regression"
Tian, Qing, Meng Cao, Songcan Chen y Hujun Yin. "Structure-Exploiting Discriminative Ordinal Multioutput Regression". IEEE Transactions on Neural Networks and Learning Systems 32, n.º 1 (enero de 2021): 266–80. http://dx.doi.org/10.1109/tnnls.2020.2978508.
Texto completoLi, Shunlong, Huiming Yin, Zhonglong Li, Wencheng Xu, Yao Jin y Shaoyang He. "Optimal sensor placement for cable force monitoring based on multioutput support vector regression model". Advances in Structural Engineering 21, n.º 15 (7 de mayo de 2018): 2259–69. http://dx.doi.org/10.1177/1369433218772342.
Texto completoTuia, D., J. Verrelst, L. Alonso, F. Perez-Cruz y G. Camps-Valls. "Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation". IEEE Geoscience and Remote Sensing Letters 8, n.º 4 (julio de 2011): 804–8. http://dx.doi.org/10.1109/lgrs.2011.2109934.
Texto completoKONDO, Tadashi. "Multiinput-Multioutput Type GMDH Algorithm Using Regression-Principal Component Analysis". Transactions of the Institute of Systems, Control and Information Engineers 6, n.º 11 (1993): 520–29. http://dx.doi.org/10.5687/iscie.6.520.
Texto completoYun, Seokheon. "Performance Analysis of Construction Cost Prediction Using Neural Network for Multioutput Regression". Applied Sciences 12, n.º 19 (24 de septiembre de 2022): 9592. http://dx.doi.org/10.3390/app12199592.
Texto completoWang, Yu y Guohua Liu. "MLA-TCN: Multioutput Prediction of Dam Displacement Based on Temporal Convolutional Network with Attention Mechanism". Structural Control and Health Monitoring 2023 (25 de agosto de 2023): 1–19. http://dx.doi.org/10.1155/2023/2189912.
Texto completoWu, Shengbiao, Huaning Li y Xianpeng Chen. "Parametric Model for Coaxial Cavity Filter with Combined KCCA and MLSSVR". International Journal of Antennas and Propagation 2023 (7 de junio de 2023): 1–10. http://dx.doi.org/10.1155/2023/2024720.
Texto completoHuang, Kai, Ming-Yi You, Yun-Xia Ye, Bin Jiang y An-Nan Lu. "Direction of Arrival Based on the Multioutput Least Squares Support Vector Regression Model". Mathematical Problems in Engineering 2020 (30 de septiembre de 2020): 1–8. http://dx.doi.org/10.1155/2020/8601376.
Texto completoRosentreter, Johannes, Ron Hagensieker, Akpona Okujeni, Ribana Roscher, Paul D. Wagner y Bjorn Waske. "Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10, n.º 5 (mayo de 2017): 1938–48. http://dx.doi.org/10.1109/jstars.2017.2652726.
Texto completoZhen, Xiantong, Heye Zhang, Ali Islam, Mousumi Bhaduri, Ian Chan y Shuo Li. "Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression". Medical Image Analysis 36 (febrero de 2017): 184–96. http://dx.doi.org/10.1016/j.media.2016.11.008.
Texto completoTesis sobre el tema "Multioutput regression"
Elimam, Rayane. "Apprentissage automatique pour la prédiction de performances : du sport à la santé". Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Texto completoNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Capítulos de libros sobre el tema "Multioutput regression"
Silalahi, Margaretha Gracia Hotmatua, Muhammad Ahsan y Muhammad Hisyam Lee. "Statistical Quality Control of NPK Fertilizer Production Process using Mixed Dual Multivariate Cumulative Sum (MDMCUSUM) Chart based on Multioutput Least Square Support Vector Regression (MLS-SVR)". En Advances in Computer Science Research, 4–13. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-332-0_2.
Texto completoActas de conferencias sobre el tema "Multioutput regression"
emami, seyedsaman y Gonzalo Martínez-Muñoz. "Multioutput Regression Neural Network Training via Gradient Boosting". En ESANN 2022 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2022. http://dx.doi.org/10.14428/esann/2022.es2022-95.
Texto completoShao, Yiping, Shichang Du y Lifeng Xi. "3D Machined Surface Topography Forecasting With Space-Time Multioutput Support Vector Regression Using High Definition Metrology". En ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67155.
Texto completoGainitdinov, Batyrkhan, Yury Meshalkina, Denis Orlova, Evgeny Chekhonin, Julia Zagranovskaya, Dmitri Koroteeva y Yury Popov. "Predicting Mineralogical Composition in Unconventional Formations Using Machine Learning and Well Logging Data". En International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23487-ea.
Texto completo