Literatura académica sobre el tema "Multilingual information extraction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multilingual information extraction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multilingual information extraction"
Claro, Daniela Barreiro, Marlo Souza, Clarissa Castellã Xavier y Leandro Oliveira. "Multilingual Open Information Extraction: Challenges and Opportunities". Information 10, n.º 7 (2 de julio de 2019): 228. http://dx.doi.org/10.3390/info10070228.
Texto completoKhairova, Nina, Orken Mamyrbayev, Kuralay Mukhsina, Anastasiia Kolesnyk y Saurabh Pratap. "Logical-linguistic model for multilingual Open Information Extraction". Cogent Engineering 7, n.º 1 (1 de enero de 2020): 1714829. http://dx.doi.org/10.1080/23311916.2020.1714829.
Texto completoHashemzahde, Bahare y Majid Abdolrazzagh-Nezhad. "Improving keyword extraction in multilingual texts". International Journal of Electrical and Computer Engineering (IJECE) 10, n.º 6 (1 de diciembre de 2020): 5909. http://dx.doi.org/10.11591/ijece.v10i6.pp5909-5916.
Texto completoVasilkovsky, Michael, Anton Alekseev, Valentin Malykh, Ilya Shenbin, Elena Tutubalina, Dmitriy Salikhov, Mikhail Stepnov, Andrey Chertok y Sergey Nikolenko. "DetIE: Multilingual Open Information Extraction Inspired by Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 10 (28 de junio de 2022): 11412–20. http://dx.doi.org/10.1609/aaai.v36i10.21393.
Texto completoGhimire, Dadhi Ram, Sanjeev Panday y Aman Shakya. "Information Extraction from a Large Knowledge Graph in the Nepali Language". National College of Computer Studies Research Journal 3, n.º 1 (9 de diciembre de 2024): 33–49. https://doi.org/10.3126/nccsrj.v3i1.72336.
Texto completoAzzam, Saliha, Kevin Humphreys, Robert Gaizauskas y Yorick Wilks. "Using a language independent domain model for multilingual information extraction". Applied Artificial Intelligence 13, n.º 7 (octubre de 1999): 705–24. http://dx.doi.org/10.1080/088395199117252.
Texto completoSeretan, Violeta y Eric Wehrli. "Multilingual collocation extraction with a syntactic parser". Language Resources and Evaluation 43, n.º 1 (1 de octubre de 2008): 71–85. http://dx.doi.org/10.1007/s10579-008-9075-7.
Texto completoZhang, Ruijuan. "Multilingual pretrained based multi-feature fusion model for English text classification". Computer Science and Information Systems, n.º 00 (2025): 4. https://doi.org/10.2298/csis240630004z.
Texto completoDanielsson, Pernilla. "Automatic extraction of meaningful units from corpora". International Journal of Corpus Linguistics 8, n.º 1 (14 de agosto de 2003): 109–27. http://dx.doi.org/10.1075/ijcl.8.1.06dan.
Texto completoAysa, Anwar, Mijit Ablimit, Hankiz Yilahun y Askar Hamdulla. "Chinese-Uyghur Bilingual Lexicon Extraction Based on Weak Supervision". Information 13, n.º 4 (31 de marzo de 2022): 175. http://dx.doi.org/10.3390/info13040175.
Texto completoTesis sobre el tema "Multilingual information extraction"
Ramsey, Marshall C., Thian-Huat Ong y Hsinchun Chen. "Multilingual Input System for the Web - an Open Multimedia Approach of Keyboard and Handwriting Recognition for Chinese and Japanese". IEEE, 1998. http://hdl.handle.net/10150/105120.
Texto completoThe basic building block of a multilingual information retrieval system is the input system. Chinese and Japanese characters pose great challenges for the conventional 101 -key alphabet-based keyboard, because they are radical-based and number in the thousands. This paper reviews the development of various approaches and then presents a framework and working demonstrations of Chinese and Japanese input methods implemented in Java, which allow open deployment over the web to any platform, The demo includes both popular keyboard input methods and neural network handwriting recognition using a mouse or pen. This framework is able to accommodate future extension to other input mediums and languages of interest.
Ramsey, Marshall C., Thian-Huat Ong y Hsinchun Chen. "Multilingual input system for the Web - an open multimedia approach of keyboard and handwritten recognition for Chinese and Japanese". IEEE, 1998. http://hdl.handle.net/10150/105350.
Texto completoThe basic building block of a multilingual information retrieval system is the input system. Chinese and Japanese characters pose great challenges for the conventional 101-key alphabet-based keyboard, because they are radical-based and number in the thousands. This paper reviews the development of various approaches and then presents a framework and working demonstrations of Chinese and Japanese input methods implemented in Java, which allow open deployment over the web to any platform, The demo includes both popular keyboard input methods and neural network handwriting recognition using a mouse or pen. This framework is able to accommodate future extension to other input mediums and languages of interest.
De, Wilde Max. "From Information Extraction to Knowledge Discovery: Semantic Enrichment of Multilingual Content with Linked Open Data". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/218774.
Texto completoDécouvrir de nouveaux savoirs dans du texte non-structuré n'est pas une tâche aisée. Les moteurs de recherche basés sur l'indexation complète des contenus montrent leur limites quand ils se voient confrontés à des textes de mauvaise qualité, ambigus et/ou multilingues. L'extraction d'information et d'autres techniques issues du traitement automatique des langues permettent de répondre partiellement à cette problématique, mais sans pour autant atteindre l'idéal d'une représentation adéquate de la connaissance. Dans cette thèse, nous défendons une approche générique qui se veut la plus indépendante possible des langues, domaines et types de contenus traités. Pour ce faire, nous proposons de désambiguïser les termes à l'aide d'identifiants issus de bases de connaissances du Web des données, facilitant ainsi l'enrichissement sémantique des contenus. La valeur ajoutée de cette approche est illustrée par une étude de cas basée sur une archive historique trilingue, en mettant un accent particulier sur les contraintes de qualité, de multilinguisme et d'évolution dans le temps. Un prototype d'outil est également développé sous le nom de Multilingual Entity/Resource Combiner & Knowledge eXtractor (MERCKX), démontrant ainsi le caractère généralisable de notre approche, dans un certaine mesure, à n'importe quelle langue, domaine ou type de contenu.
Doctorat en Information et communication
info:eu-repo/semantics/nonPublished
Schleider, Thomas. "Knowledge Modeling and Multilingual Information Extraction for the Understanding of the Cultural Heritage of Silk". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS280.
Texto completoModeling any type of human knowledge is a complex effort and needs to consider all specificities of its domain including niche vocabulary. This thesis focuses on such an endeavour for the knowledge about the European silk object production, which can be considered obscure and therefore endangered. However, the fact that such Cultural Heritage data is heterogenous, spread across many museums worldwide, sparse and multilingual poses particular challenges for which knowledge graphs have become more and more popular in recent years. Our main goal is not only into investigating knowledge representations, but also in which ways such an integration process can be accompanied through enrichments, such as information reconciliation through ontologies and vocabularies, as well as metadata predictions to fill gaps in the data. We will first propose a workflow for the management for the integration of data about silk artifacts and afterwards present different classification approaches, with a special focus on unsupervised and zero-shot methods. Finally, we study ways of making exploration of such metadata and images afterwards as easy as possible
Yeh, Hui-Syuan. "Prompt-based Relation Extraction for Pharmacovigilance". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG097.
Texto completoExtracting and maintaining up-to-date knowledge from diverse linguistic sources is imperative for the benefit of public health. While professional sources, including scientific journals and clinical notes, provide the most reliable knowledge, observations reported in patient forums and social media can bring complementary information for certain themes. Spotting entities and their relationships in these varied sources is particularly valuable. We focus on relation extraction in the medical domain. At the outset, we highlight the inconsistent terminology in the community and clarify the diverse setups used to build and evaluate relation extraction systems. To obtain reliable comparisons, we compare systems using the same setup. Additionally, we conduct a series of stratified evaluations to further investigate which data properties affect the models' performance. We show that model performance tends to decrease with relation density, relation diversity, and entity distance. Subsequently, this work explores a new training paradigm for biomedical relation extraction: prompt-based methods with masked language models. In this context, performance depends on the quality of prompt design. This requires manual efforts and domain knowledge, especially when designing the label words that link model predictions to relation classes. To overcome this overhead, we introduce an automated label word generation technique leveraging a dependency parser and training data. This approach minimizes manual intervention and enhances model performance with fewer parameters to be fine-tuned. Our approach performs on par with other verbalizer methods without additional training. Then, this work addresses information extraction from text written by laypeople about adverse drug reactions. To this end, as part of a joint effort, we have curated a tri-lingual corpus in German, French, and Japanese collected from patient forums and social media platforms. The challenge and the potential applications of the corpus are discussed. We present baseline experiments on the corpus that highlight three points: the effectiveness of a multilingual model in the cross-lingual setting, preparing negative samples for relation extraction by considering the co-reference and the distance between entities, and methods to address the highly imbalanced distribution of relations. Lastly, we integrate information from a medical knowledge base into the prompt-based approach with autoregressive language models for biomedical relation extraction. Our goal is to use external factual knowledge to enrich the context of the entities involved in the relation to be classified. We find that general models particularly benefit from external knowledge. Our experimental setup reveals that different entity markers are effective across different corpora. We show that the relevant knowledge helps, though the format of the prompt has a greater impact on performance than the additional information itself
Akbik, Alan [Verfasser], Volker [Akademischer Betreuer] Markl, Hans [Gutachter] Uszkoreit y Chris [Gutachter] Biemann. "Exploratory relation extraction in large multilingual data / Alan Akbik ; Gutachter: Hans Uszkoreit, Chris Biemann ; Betreuer: Volker Markl". Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156177308/34.
Texto completoGuénec, Nadège. "Méthodologies pour la création de connaissances relatives au marché chinois dans une démarche d'Intelligence Économique : application dans le domaine des biotechnologies agricoles". Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00554743.
Texto completoCharton, Éric. "Génération de phrases multilingues par apprentissage automatique de modèles de phrases". Thesis, Avignon, 2010. http://www.theses.fr/2010AVIG0175/document.
Texto completoNatural Language Generation (NLG) is the natural language processing task of generating natural language from a machine representation system. In this thesis report, we present an architecture of NLG system relying on statistical methods. The originality of our proposition is its ability to use a corpus as a learning resource for sentences production. This method offers several advantages : it simplifies the implementation and design of a multilingual NLG system, capable of sentence production of the same meaning in several languages. Our method also improves the adaptability of a NLG system to a particular semantic field. In our proposal, sentence generation is achieved trough the use of sentence models, obtained from a training corpus. Extracted sentences are abstracted by a labelling step obtained from various information extraction and text mining methods like named entity recognition, co-reference resolution, semantic labelling and part of speech tagging. The sentence generation process is achieved by a sentence realisation module. This module provide an adapted sentence model to fit a communicative intent, and then transform this model to generate a new sentence. Two methods are proposed to transform a sentence model into a generated sentence, according to the semantic content to express. In this document, we describe the complete labelling system applied to encyclopaedic content to obtain the sentence models. Then we present two models of sentence generation. The first generation model substitute the semantic content to an original sentence content. The second model is used to find numerous proto-sentences, structured as Subject, Verb, Object, able to fit by part a whole communicative intent, and then aggregate all the selected proto-sentences into a more complex one. Our experiments of sentence generation with various configurations of our system have shown that this new approach of NLG have an interesting potential
Gerber, Daniel [Verfasser], Klaus-Peter [Akademischer Betreuer] Fähnrich, Klaus-Peter [Gutachter] Fähnrich, Ngomo Axel-Cyrille [Akademischer Betreuer] Ngonga y Axel [Gutachter] Polleres. "Statistical Extraction of Multilingual Natural Language Patterns for RDF Predicates: Algorithms and Applications / Daniel Gerber ; Gutachter: Klaus-Peter Fähnrich, Axel Polleres ; Klaus-Peter Fähnrich, Axel-Cyrille Ngonga Ngomo". Leipzig : Universitätsbibliothek Leipzig, 2016. http://d-nb.info/1239739478/34.
Texto completoLibros sobre el tema "Multilingual information extraction"
Poibeau, Thierry, Horacio Saggion, Jakub Piskorski y Roman Yangarber, eds. Multi-source, Multilingual Information Extraction and Summarization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28569-1.
Texto completoGeoff, Barnbrook, Danielsson Pernilla y Mahlberg Michaela, eds. Meaningful texts: The extraction of semantic information from monolingual and multilingual corpora. London: Continuum, 2005.
Buscar texto completoMultisource Multilingual Information Extraction And Summarization. Springer, 2012.
Buscar texto completoPoibeau, Thierry, Horacio Saggion, Jakub Piskorski y Roman Yangarber. Multi-Source, Multilingual Information Extraction and Summarization. Springer London, Limited, 2012.
Buscar texto completoPoibeau, Thierry, Horacio Saggion, Jakub Piskorski y Roman Yangarber. Multi-source, Multilingual Information Extraction and Summarization. Springer, 2014.
Buscar texto completoPoibeau, Thierry, Horacio Saggion y Jakub Piskorski. Multi-source, Multilingual Information Extraction and Summarization. Springer, 2012.
Buscar texto completoMeaningful Texts: The Extraction of Semantic Information from Monolingual and Multilingual Corporations. Univ of Birmingham, 2004.
Buscar texto completoMeaningful Texts: The Extraction of Semantic Information from Monolingual and Multilingual Corporations. Univ of Birmingham, 2005.
Buscar texto completoDanielsson, Pernilla. Meaningful Texts: The Extraction of Semantic Information from Monolingual and Multilingual Corpora. Bloomsbury Publishing Plc, 2010.
Buscar texto completoDanielsson, Pernilla. Meaningful Texts: The Extraction of Semantic Information from Monolingual and Multilingual Corpora. Bloomsbury Publishing Plc, 2004.
Buscar texto completoCapítulos de libros sobre el tema "Multilingual information extraction"
Gamallo, Pablo y Marcos Garcia. "Multilingual Open Information Extraction". En Progress in Artificial Intelligence, 711–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23485-4_72.
Texto completoEsuli, Andrea y Fabrizio Sebastiani. "Evaluating Information Extraction". En Multilingual and Multimodal Information Access Evaluation, 100–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15998-5_12.
Texto completoPalmer, David D., Marc B. Reichman y Noah White. "Multimedia Information Extraction in a Live Multilingual News Monitoring System". En Multimedia Information Extraction, 145–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118219546.ch9.
Texto completoKabadjov, Mijail, Josef Steinberger y Ralf Steinberger. "Multilingual Statistical News Summarization". En Multi-source, Multilingual Information Extraction and Summarization, 229–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28569-1_11.
Texto completoThurmair, Gregor. "Multiword expressions in multilingual information extraction". En Multiword Units in Machine Translation and Translation Technology, 104–23. Amsterdam: John Benjamins Publishing Company, 2018. http://dx.doi.org/10.1075/cilt.341.05thu.
Texto completoDini, Luca. "Parallel Information Extraction System for Multilingual Information Access". En Advances in Intelligent Systems, 179–90. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4840-5_16.
Texto completoPiskorski, Jakub y Roman Yangarber. "Information Extraction: Past, Present and Future". En Multi-source, Multilingual Information Extraction and Summarization, 23–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28569-1_2.
Texto completoRibeiro, Ricardo y David Martins de Matos. "Improving Speech-to-Text Summarization by Using Additional Information Sources". En Multi-source, Multilingual Information Extraction and Summarization, 277–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28569-1_13.
Texto completoJi, Heng, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek Hakkani-Tur y Ralph Grishman. "Open-Domain Multi-Document Summarization via Information Extraction: Challenges and Prospects". En Multi-source, Multilingual Information Extraction and Summarization, 177–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28569-1_9.
Texto completoLi, Fang, Huanye Sheng, Dongmo Zhang y Tianfang Yao. "An Internet Based Multilingual Investment Information Extraction System". En The Internet Challenge: Technology and Applications, 1–9. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0494-7_1.
Texto completoActas de conferencias sobre el tema "Multilingual information extraction"
Sanjaya, Hafidz, Kusrini Kusrini, Kumara Ari Yuana y José Ramén Martínez Salio. "Multilingual Named Entity Recognition Model for Location and Time Extraction of Forest Fire". En 2024 4th International Conference of Science and Information Technology in Smart Administration (ICSINTESA), 611–15. IEEE, 2024. http://dx.doi.org/10.1109/icsintesa62455.2024.10747844.
Texto completoYuan, Yue y Huaping Zhang. "An Improved Topic Extraction Method Based on Word Frequency Information Entropy for Multilingual Topic Attentional Division". En 2024 9th International Conference on Intelligent Computing and Signal Processing (ICSP), 675–81. IEEE, 2024. http://dx.doi.org/10.1109/icsp62122.2024.10743506.
Texto completoWiedemann, Gregor, Seid Muhie Yimam y Chris Biemann. "A Multilingual Information Extraction Pipeline for Investigative Journalism". En Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/d18-2014.
Texto completoKotnis, Bhushan, Kiril Gashteovski, Daniel Rubio, Ammar Shaker, Vanesa Rodriguez-Tembras, Makoto Takamoto, Mathias Niepert y Carolin Lawrence. "MILIE: Modular & Iterative Multilingual Open Information Extraction". En Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.acl-long.478.
Texto completoVijayan, Karthika y Oshin Anand. "Language-Agnostic Text Processing for Information Extraction". En 12th International Conference on Artificial Intelligence, Soft Computing and Applications. Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.122310.
Texto completoAone, Chinatsu, Nicholas Charocopos y James Gorlinsky. "An intelligent multilingual information browsing and retrieval system using information extraction". En the fifth conference. Morristown, NJ, USA: Association for Computational Linguistics, 1997. http://dx.doi.org/10.3115/974557.974606.
Texto completoMaynard, Diana y Hamish Cunningham. "Multilingual adaptations of ANNIE, a reusable information extraction tool". En the tenth conference. Morristown, NJ, USA: Association for Computational Linguistics, 2003. http://dx.doi.org/10.3115/1067737.1067789.
Texto completoKolluru, Keshav, Muqeeth Mohammed, Shubham Mittal, Soumen Chakrabarti y Mausam . "Alignment-Augmented Consistent Translation for Multilingual Open Information Extraction". En Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.acl-long.179.
Texto completoBretschneider, Claudia, Heiner Oberkampf, Sonja Zillner, Bernhard Bauer y Matthias Hammon. "Corpus-based Translation of Ontologies for Improved Multilingual Semantic Annotation". En Proceedings of the Third Workshop on Semantic Web and Information Extraction. Stroudsburg, PA, USA: Association for Computational Linguistics and Dublin City University, 2014. http://dx.doi.org/10.3115/v1/w14-6201.
Texto completoNguyen, Minh Van, Nghia Ngo, Bonan Min y Thien Nguyen. "FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction". En Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.naacl-demo.14.
Texto completo