Literatura académica sobre el tema "Multicatalyse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multicatalyse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multicatalyse"
Poe, Sarah L., Muris Kobašlija y D. Tyler McQuade. "Microcapsule Enabled Multicatalyst System". Journal of the American Chemical Society 128, n.º 49 (diciembre de 2006): 15586–87. http://dx.doi.org/10.1021/ja066476l.
Texto completoHofmann, Christine, Sören M. M. Schuler, Raffael C. Wende y Peter R. Schreiner. "En route to multicatalysis: kinetic resolution of trans-cycloalkane-1,2-diols via oxidative esterification". Chem. Commun. 50, n.º 10 (2014): 1221–23. http://dx.doi.org/10.1039/c3cc48584f.
Texto completoMata, José A., F. Ekkehardt Hahn y Eduardo Peris. "Heterometallic complexes, tandem catalysis and catalytic cooperativity". Chem. Sci. 5, n.º 5 (2014): 1723–32. http://dx.doi.org/10.1039/c3sc53126k.
Texto completoMa, Jin-Tao y Ying Cheng. "Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes". Organic Chemistry Frontiers 7, n.º 21 (2020): 3459–67. http://dx.doi.org/10.1039/d0qo00877j.
Texto completoJürjens, Gerrit, Andreas Kirschning y David A. Candito. "Lessons from the Synthetic Chemist Nature". Natural Product Reports 32, n.º 5 (2015): 723–37. http://dx.doi.org/10.1039/c4np00160e.
Texto completoTang, Xinxin, Lan Gan, Xin Zhang y Zheng Huang. "n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis". Science Advances 6, n.º 47 (noviembre de 2020): eabc6688. http://dx.doi.org/10.1126/sciadv.abc6688.
Texto completoPellissier, Hélène. "Recent developments in enantioselective multicatalysed tandem reactions". Tetrahedron 69, n.º 35 (septiembre de 2013): 7171–210. http://dx.doi.org/10.1016/j.tet.2013.06.020.
Texto completoMartínez, Sebastián, Lukas Veth, Bruno Lainer y Paweł Dydio. "Challenges and Opportunities in Multicatalysis". ACS Catalysis 11, n.º 7 (15 de marzo de 2021): 3891–915. http://dx.doi.org/10.1021/acscatal.0c05725.
Texto completoTsoung, Jennifer, Jane Panteleev, Matthias Tesch y Mark Lautens. "Multicomponent-Multicatalyst Reactions (MC)2R: Efficient Dibenzazepine Synthesis". Organic Letters 16, n.º 1 (13 de diciembre de 2013): 110–13. http://dx.doi.org/10.1021/ol4030925.
Texto completoMarafi, A., F. Maruyama, A. Stanislaus y E. Kam. "Multicatalyst System Testing Methodology for Upgrading Residual Oils". Industrial & Engineering Chemistry Research 47, n.º 3 (febrero de 2008): 724–41. http://dx.doi.org/10.1021/ie071103u.
Texto completoTesis sobre el tema "Multicatalyse"
Hou, Jingke. "Compartmentalized enantioselective multicatalysis using polydimethylsiloxane membrane". Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0013.
Texto completoThe goal of this thesis was focused on the production of optically enriched enantiomers with complete consumption of racemic starting materials through newly designed double reactions system compartmentalized by a polydimethylsiloxane (PDMS) membrane with selective permeability. Firstly, the permeability of the PDMS membrane was studied showing a transfer selectivity of species depending on their polarity. Subsequently, the esterification and transesterification opposite reactions isolated by a PDMS membrane were performed to produce separated enantioenriched alcohols starting from racemic alcohols. However, we failed to set up such system due to the incompatibility of PDMS with the conditions of transesterification. Secondly, the compartmentalized parallel kinetic resolution combining two catalytic systems with opposite enantioselectivity isolated by a PDMS membrane was performed to produce both enantioenriched enantiomers, mirror image each other, isolated in each compartment starting from a racemic substrate. This concept was successfully established using the Jacobsen’s hydrolytic kinetic resolution of terminal epoxide. Each enantioenriched diol can be obtained up to 100% conversion from racemic epoxides. Thirdly, the compartmentalized dynamic kinetic resolution process combining a kinetic resolution and a racemization reaction isolated by PDMS membrane was performed to produce one single enantioenriched product starting from a racemic substrate. This enantioconvergent process allows to obtain an enantioenriched allylic ester up to 100% conversion from racemic allylic secondary alcohol circumventing the drawbacks of the incompatibility of the two catalytic system
Giorgi, Pascal. "Nouvelles réactions à économie d'atomes et d'étapes basées sur la catalyse par des nanoparticules d'or et la multicatalyse. Applications dans la synthèse de chimie fine et des odorants". Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4127.
Texto completoElaboration of synthetic methods based on metal-catalyzed reactions has been a hot topic in organic chemistry. Despite good efficiency, catalysis proceeding homogeneously, are limited in the operation of recovering/recycling of the catalysts. An important stress was placed to design catalysis, offering both the efficiency of homogeneous catalysts and the recyclability of heterogeneous catalysts. In this context, metal nanoparticles merged as a key tool, due to their unique physical and chemical properties. Notably, Au NPs have shown remarkable catalytic activity in the oxidation of activated alcohols under O2 atmosphere. Since now, the access to more complex molecules is the next step forward for this field, we envisioned multicatalytic roads, based on the oxidation of activated alcohols via supported Au NPs. Our choice of using solid catalysts was relevant, since nanostructured catalysts for which the fraction of active sites are located on the surface, limit the risk of cross-quenching. The latter carbonyl formed, could be further converted in situ, via tandem protocol. Herein, we developed novel, atom- and step-economical bicatalytic one-pot processes, to access substituted chromenes/quinolines (53-93%) by tandem oxidation/hetero-Michael addition/aldolisation combining nanocatalysis and base catalysis, ortho-THCs (50-81%) via tandem oxidation/arylation/cyclisation combining nanocatalysis and supported catalysts and a tandem cascade oxidation/hydrolysis to access HMLA (86%, sel 93%). A large panel of products of biological activity relevance, pertaining to the fragrance chemistry or aiming in some cases, pre-industrial scalability via continuous flow applications
Lainer, Bruno. "A multicatalytic approach to enantio-, and diastereoselective arylation of alcohols". Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAF080.
Texto completoAlcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, therefore methods enabling their structural diversification are sought after. However, modifying the structure of alcohols at certain unreactive positions, even with the aid of catalysis, remains a challenge or requires tedious often wasteful multistep procedures. Recently, increased attention has been paid to multicatalysis, which combines multiple catalysts within one system, enabling the discovery of previously inaccessible reactivities or increasing the overall efficiency of multistep transformations. Described within are methods which enable the diastereo-, and enantioselective α-, and β-arylation of alcohols. By combining Ru- and Pd-based catalysts the unprecedented, enantioselective (and diastereodivergent in the case of alcohols already bearing stereocenters) β-arylation of primary alcohols can be carried out. Also, under sequential relay catalysis enantioenriched secondary benzylic alcohols can be obtained from a variety of available starting materials, such as primary alcohols, or alcohols bearing a double bond. Overall, these protocols demonstrate the potential of multicatalysis as a synthetic tool for diversifying alcohols. In a broader context, this thesis sets the stage for devising novel, multicatalytic strategies and methods for efficient synthesis
Schuler, Sören Manuel Michael [Verfasser]. "(Un)expected extensions of the multicatalysis concept / Sören Manuel Michael Schuler". Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1120270383/34.
Texto completoWende, Raffael Christoph [Verfasser]. "New frontiers in peptide catalysis : multicatalysis, challenging reactions, and the importance of dispersion interactions / Raffael Christoph Wende". Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1114659002/34.
Texto completoKelly, Brendan Douglas. "Part I: Development of New Methods for Multicatalysis: Bismuth(III) Triflate-Catalyzed Hydrofunctionalizations . ." Thesis, 2011. https://doi.org/10.7916/D8SX6M7B.
Texto completoTundel, Rachel E. "I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . ." Thesis, 2012. https://doi.org/10.7916/D8VX0NV5.
Texto completoLibros sobre el tema "Multicatalyse"
Pellissier, Hélène. Enantioselective multicatalysed tandem reactions. Cambridge: Royal Soc Of Chemistry, 2014.
Buscar texto completoZhou, Jian, ed. Multicatalyst System in Asymmetric Catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.
Texto completoKelly, Brendan Douglas. Part I : Development of New Methods for Multicatalysis: Bismuth Triflate-Catalyzed Hydrofunctionalizations . . . [New York, N.Y.?]: [publisher not identified], 2011.
Buscar texto completoTundel, Rachel E. I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . . . [New York, N.Y.?]: [publisher not identified], 2012.
Buscar texto completoEnantioselective Multicatalysed Tandem Reactions. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621355.
Texto completoZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley, 2014.
Buscar texto completoZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Limited, John, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Multicatalyse"
Cao, Zhong-Yan, Feng Zhu y Jian Zhou. "Multicatalyst System". En Multicatalyst System in Asymmetric Catalysis, 37–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch2.
Texto completoZeng, Xing-Ping y Jian Zhou. "Asymmetric Assisted Catalysis by Multicatalyst System". En Multicatalyst System in Asymmetric Catalysis, 411–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch6.
Texto completoZhou, Feng, Yun-Lin Liu y Jian Zhou. "Multicatalyst System Realized Asymmetric Tandem Reactions". En Multicatalyst System in Asymmetric Catalysis, 501–631. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch8.
Texto completoZhou, Jian y Jin-Sheng Yu. "Toward Ideal Asymmetric Catalysis". En Multicatalyst System in Asymmetric Catalysis, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch1.
Texto completoLiu, Yun-Lin y Jian Zhou. "Multicatalyst System Mediated Asymmetric Reactions in Total Synthesis". En Multicatalyst System in Asymmetric Catalysis, 671–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch10.
Texto completoYu, Jin-Sheng y Jian Zhou. "Asymmetric Multifunctional Catalysis". En Multicatalyst System in Asymmetric Catalysis, 159–289. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch3.
Texto completoChen, Long, Yun-Lin Liu y Jian Zhou. "Asymmetric Cooperative Catalysis". En Multicatalyst System in Asymmetric Catalysis, 291–371. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch4.
Texto completoChen, Long, Zhong-Yan Cao y Jian Zhou. "Asymmetric Double Activation Catalysis by Multicatalyst System". En Multicatalyst System in Asymmetric Catalysis, 373–410. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch5.
Texto completoCao, Zhong-Yan y Jian Zhou. "Asymmetric Catalysis Facilitated by Photochemical or Electrochemical Methods". En Multicatalyst System in Asymmetric Catalysis, 475–500. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch7.
Texto completoZhou, Jian y Xing-Ping Zeng. "Waste-Mediated Reactions". En Multicatalyst System in Asymmetric Catalysis, 633–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch9.
Texto completo