Literatura académica sobre el tema "Multibody kinematic optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multibody kinematic optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multibody kinematic optimization"
Tarnita, Daniela, Ionut Daniel Geonea, Doina Pisla, Giuseppe Carbone, Bogdan Gherman, Nicoleta Tohanean, Paul Tucan, Cristian Abrudan y Danut Nicolae Tarnita. "Analysis of Dynamic Behavior of ParReEx Robot Used in Upper Limb Rehabilitation". Applied Sciences 12, n.º 15 (7 de agosto de 2022): 7907. http://dx.doi.org/10.3390/app12157907.
Texto completoLefebvre, F., I. Rogowski, N. Long y Y. Blache. "Influence of marker weights optimization on scapular kinematics estimated with a multibody kinematic optimization". Journal of Biomechanics 159 (octubre de 2023): 111795. http://dx.doi.org/10.1016/j.jbiomech.2023.111795.
Texto completoDouadi, Lounis, Davide Spinello, Wail Gueaieb y Hassan Sarfraz. "Planar kinematics analysis of a snake-like robot". Robotica 32, n.º 5 (4 de noviembre de 2013): 659–75. http://dx.doi.org/10.1017/s026357471300091x.
Texto completoHall, Andrew, Thomas Uchida, Francis Loh, Chad Schmitke y John Mcphee. "Reduction of a Vehicle Multibody Dynamic Model Using Homotopy Optimization". Archive of Mechanical Engineering 60, n.º 1 (1 de marzo de 2013): 23–35. http://dx.doi.org/10.2478/meceng-2013-0002.
Texto completoDelyová, Ingrid, Darina Hroncová, Peter Frankovský, Peter Sivák, Ján Kostka y Vojtech Neumann. "Application of direct and inverse kinematics and dynamics in motion planning of manipulator links". International Journal of Applied Mechanics and Engineering 28, n.º 3 (29 de septiembre de 2023): 53–64. http://dx.doi.org/10.59441/ijame/169515.
Texto completoBlache, Y., M. Degot, M. Begon, S. Duprey y I. Rogowski. "Does double calibration coupled with a closed loop multibody kinematic optimization improve scapular kinematic estimates?" Computer Methods in Biomechanics and Biomedical Engineering 23, sup1 (19 de octubre de 2020): S35—S37. http://dx.doi.org/10.1080/10255842.2020.1811505.
Texto completoManrique-Escobar, Camilo Andres, Carmine Maria Pappalardo y Domenico Guida. "A Multibody System Approach for the Systematic Development of a Closed-Chain Kinematic Model for Two-Wheeled Vehicles". Machines 9, n.º 11 (20 de octubre de 2021): 245. http://dx.doi.org/10.3390/machines9110245.
Texto completoBlanco-Claraco, Jose-Luis, Antonio Leanza y Giulio Reina. "A general framework for modeling and dynamic simulation of multibody systems using factor graphs". Nonlinear Dynamics 105, n.º 3 (28 de julio de 2021): 2031–53. http://dx.doi.org/10.1007/s11071-021-06731-6.
Texto completoBlache, Y., M. Degot, S. Duprey, M. Begon y I. Rogowski. "Closed-loop multibody kinematic optimization coupled with double calibration improves scapular kinematic estimates in asymptomatic population". Journal of Biomechanics 126 (septiembre de 2021): 110653. http://dx.doi.org/10.1016/j.jbiomech.2021.110653.
Texto completoKaidash, Mykhailo y Serhii Selevych. "Dynamics and kinematics of complex mechanical systems harnessing multibody dynamic program". Bulletin of Electrical Engineering and Informatics 13, n.º 6 (1 de diciembre de 2024): 3928–37. http://dx.doi.org/10.11591/eei.v13i6.7721.
Texto completoTesis sobre el tema "Multibody kinematic optimization"
Lefebvre, Félix. "Analyse cinématique de l'épaule et du membre supérieur par capture de mouvement avec et sans marqueurs". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10264.
Texto completoThe precise and quantified characterization of human movement is essential in many fields, particularly in clinic and sports, to enhance, preserve, or restore motor abilities. The complex anatomy of the shoulder gives it fine and large-range motion capability, at the cost of fragile stability, exposing it to significant risks of impairments that can compromise its mobility. To accurately estimate the kinematics of the shoulder complex, it is necessary to have a motion capture system that is fast, accurate, and suitable for routine use. Among the many tools employed, shoulder kinematic estimation via direct measurement is generally invasive or radiation-based, and in any case not suited for systematic evaluation. Indirect skin-based shoulder kinematic estimation methods, especially those using markers, are widely used but offer lower accuracy due to soft tissue artifacts. Numerous experimental and numerical strategies have been developed to improve their performance, though they have not yet fully satisfied expectations. Recently, markerless motion capture methods have emerged, but to date, none of them provide estimates compatible with the detailed kinematic modeling of the shoulder complex. The objective of this thesis was therefore to contribute to the development of shoulder kinematic analysis tools using both marker-based and markerless motion capture. A first sub-objective of this thesis was to study the influence of kinematic model optimization and scapular marker weight on scapular kinematics in a multibody kinematic optimization. The results of this first study highlighted that marker redundancy, meaning the use of more than three markers on the scapula, is recommended for scapular kinematic estimation in multibody kinematic optimization. These results also showed that the optimal marker weights are both participant- and movement-specific, but that an average weight set per movement could improve scapular kinematic estimation. The second sub-objective of this thesis was to develop a markerless motion capture method using a deep learning algorithm that allows for the kinematic tracking of the upper-limb, including the shoulder complex. This second study involved developing a 2D pose estimation algorithm capable of identifying 20 anatomical landmarks across five different movements with a median accuracy of less than 9 px. The markerless motion capture method developed based on this algorithm provided 3D estimates of the anatomical landmarks of the shoulder with an average accuracy of less than 15 mm, resulting in an articular kinematic accuracy of 14° for the scapulothoracic joint. These estimates were equivalent to, if not better than, those obtained using marker-based motion capture, with a significant time-saving due to the absence of preparation required. Further research is needed to transform this proof of concept into a fully functional motion capture tool and validate its potential to become the most suitable method for routine shoulder complex kinematic estimation
Zháňal, Lubor. "Simulace kinematiky a dynamiky vozidlových mechanismů". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234269.
Texto completo"Geometrical and kinematic optimization of closed-loop multibody systems/Optimisation géométrique et cinématique de systèmes multicorps avec boucles cinématiques". Université catholique de Louvain, 2007. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11132007-114747/.
Texto completoCapítulos de libros sobre el tema "Multibody kinematic optimization"
Kuenzer, U. y M. L. Husty. "Joint Trajectory Optimization Using All Solutions of Inverse Kinematics of General 6-R Robots". En Multibody Mechatronic Systems, 423–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09858-6_40.
Texto completoBen Abdallah, Mohamed Amine, Imed Khemili, Med Amine Laribi y Nizar Aifaoui. "Dynamic Synthesis of a Multibody System: A Comparative Study Between Genetic Algorithm and Particle Swarm Optimization Techniques". En Computational Kinematics, 227–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60867-9_26.
Texto completoActas de conferencias sobre el tema "Multibody kinematic optimization"
Datoussaïd, Sélim, Olivier Verlinden y Calogéro Conti. "Optimal Design of Multibody Systems by Using Genetic Algorithms". En ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8682.
Texto completoFumagalli, Alessandro, Gabriella Gaias y Pierangelo Masarati. "A Simple Approach to Kinematic Inversion of Redundant Mechanisms". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35285.
Texto completoZhu, Yitao, Daniel Dopico, Corina Sandu y Adrian Sandu. "MBSVT: Software for Modeling, Sensitivity Analysis, and Optimization of Multibody Systems at Virginia Tech". En ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34084.
Texto completoKim, Junggon y Rudranarayan Mukherjee. "A QP-Based Approach to Kinematic Motion Planning of Multibody Systems". En ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-48096.
Texto completoRyu, Jonathan, Andrew Ellis, R. K. Schmidt y Ilyong Kim. "Gradient Based Simultaneous Structural and Kinematic Optimization of Landing Gear Members based on the Modified Input-Output Equation for Multibody Kinematics". En AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-1672.
Texto completoHensges, Michael. "Simulation and Optimization of an Adjustable Inlet Guide Vane for Industrial Turbo Compressors". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50242.
Texto completoCallejo, Alfonso, Valentin Sonneville y Olivier A. Bauchau. "Sensitivity Analysis of Flexible Multibody Systems Based on the Motion Formalism and the Discrete Adjoint Method". En ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86211.
Texto completoSimonidis, Christian, Gu¨nther Stelzner y Wolfgang Seemann. "A Kinematic Study of Human Torso Motion". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35257.
Texto completoSancibrian, Ramon, Pablo Garcia, Fernando Viadero y Alfonso Fernandez. "Exact-Gradient Optimization Method for Rigid-Body Guidance Synthesis of Planar Mechanisms". En ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57051.
Texto completoNasr, Ali, Spencer Ferguson y John McPhee. "Model-Based Design and Optimization of Passive Shoulder Exoskeletons". En ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69437.
Texto completo