Literatura académica sobre el tema "Multiarmed Bandits"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multiarmed Bandits".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Multiarmed Bandits"

1

Righter, Rhonda, and J. George Shanthikumar. "Independently Expiring Multiarmed Bandits." Probability in the Engineering and Informational Sciences 12, no. 4 (1998): 453–68. http://dx.doi.org/10.1017/s0269964800005325.

Texto completo
Resumen
We give conditions on the optimality of an index policy for multiarmed bandits when arms expire independently. We also give a new simple proof of the optimality of the Gittins index policy for the classic multiarmed bandit problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gao, Xiujuan, Hao Liang, and Tong Wang. "A Common Value Experimentation with Multiarmed Bandits." Mathematical Problems in Engineering 2018 (July 30, 2018): 1–8. http://dx.doi.org/10.1155/2018/4791590.

Texto completo
Resumen
We study a value common experimentation with multiarmed bandits and give an application about the experimentation. The second derivative of value functions at cutoffs is investigated when an agent switches action with multiarmed bandits. If consumers have identical preference which is unknown and purchase products from only two sellers among multiple sellers, we obtain the necessary and sufficient conditions about the common experimentation. The Markov perfect equilibrium and the socially effective allocation in K-armed markets are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kalathil, Dileep, Naumaan Nayyar, and Rahul Jain. "Decentralized Learning for Multiplayer Multiarmed Bandits." IEEE Transactions on Information Theory 60, no. 4 (2014): 2331–45. http://dx.doi.org/10.1109/tit.2014.2302471.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cesa-Bianchi, Nicolò. "MULTIARMED BANDITS IN THE WORST CASE." IFAC Proceedings Volumes 35, no. 1 (2002): 91–96. http://dx.doi.org/10.3182/20020721-6-es-1901.01001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bray, Robert L., Decio Coviello, Andrea Ichino, and Nicola Persico. "Multitasking, Multiarmed Bandits, and the Italian Judiciary." Manufacturing & Service Operations Management 18, no. 4 (2016): 545–58. http://dx.doi.org/10.1287/msom.2016.0586.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Denardo, Eric V., Haechurl Park, and Uriel G. Rothblum. "Risk-Sensitive and Risk-Neutral Multiarmed Bandits." Mathematics of Operations Research 32, no. 2 (2007): 374–94. http://dx.doi.org/10.1287/moor.1060.0240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Weber, Richard. "On the Gittins Index for Multiarmed Bandits." Annals of Applied Probability 2, no. 4 (1992): 1024–33. http://dx.doi.org/10.1214/aoap/1177005588.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Drugan, Madalina M. "Covariance Matrix Adaptation for Multiobjective Multiarmed Bandits." IEEE Transactions on Neural Networks and Learning Systems 30, no. 8 (2019): 2493–502. http://dx.doi.org/10.1109/tnnls.2018.2885123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Burnetas, Apostolos N., and Michael N. Katehakis. "ASYMPTOTIC BAYES ANALYSIS FOR THE FINITE-HORIZON ONE-ARMED-BANDIT PROBLEM." Probability in the Engineering and Informational Sciences 17, no. 1 (2003): 53–82. http://dx.doi.org/10.1017/s0269964803171045.

Texto completo
Resumen
The multiarmed-bandit problem is often taken as a basic model for the trade-off between the exploration and utilization required for efficient optimization under uncertainty. In this article, we study the situation in which the unknown performance of a new bandit is to be evaluated and compared with that of a known one over a finite horizon. We assume that the bandits represent random variables with distributions from the one-parameter exponential family. When the objective is to maximize the Bayes expected sum of outcomes over a finite horizon, it is shown that optimal policies tend to simple limits when the length of the horizon is large.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nayyar, Naumaan, Dileep Kalathil, and Rahul Jain. "On Regret-Optimal Learning in Decentralized Multiplayer Multiarmed Bandits." IEEE Transactions on Control of Network Systems 5, no. 1 (2018): 597–606. http://dx.doi.org/10.1109/tcns.2016.2635380.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía