Literatura académica sobre el tema "Multiagent decision"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multiagent decision".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multiagent decision"
Kumar, Akshat, Shlomo Zilberstein y Marc Toussaint. "Probabilistic Inference Techniques for Scalable Multiagent Decision Making". Journal of Artificial Intelligence Research 53 (29 de junio de 2015): 223–70. http://dx.doi.org/10.1613/jair.4649.
Texto completoHan, Xiaoyu. "Application of Reinforcement Learning in Multiagent Intelligent Decision-Making". Computational Intelligence and Neuroscience 2022 (16 de septiembre de 2022): 1–6. http://dx.doi.org/10.1155/2022/8683616.
Texto completoNarayanan, Lakshmi Kanthan, Suresh Sankaranarayanan, Joel J. P. C. Rodrigues y Pascal Lorenz. "Multi-Agent-Based Modeling for Underground Pipe Health and Water Quality Monitoring for Supplying Quality Water". International Journal of Intelligent Information Technologies 16, n.º 3 (julio de 2020): 52–79. http://dx.doi.org/10.4018/ijiit.2020070103.
Texto completoXiang, Yang y Frank Hanshar. "Multiagent Decision Making in Collaborative Decision Networks by Utility Cluster Based Partial Evaluation". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 23, n.º 02 (abril de 2015): 149–91. http://dx.doi.org/10.1142/s0218488515500075.
Texto completoXIANG, YANG y FRANK HANSHAR. "MULTIAGENT EXPEDITION WITH GRAPHICAL MODELS". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 19, n.º 06 (diciembre de 2011): 939–76. http://dx.doi.org/10.1142/s0218488511007416.
Texto completoNunes, Ernesto, Julio Godoy y Maria Gini. "Multiagent Decision Making on Transportation Networks". Journal of Information Processing 22, n.º 2 (2014): 307–18. http://dx.doi.org/10.2197/ipsjjip.22.307.
Texto completoMaturo, Antonio y Aldo G. S. Ventre. "Reaching consensus in multiagent decision making". International Journal of Intelligent Systems 25, n.º 3 (marzo de 2010): 266–73. http://dx.doi.org/10.1002/int.20401.
Texto completoHe, Liu, Haoning Xi, Tangyi Guo y Kun Tang. "A Generalized Dynamic Potential Energy Model for Multiagent Path Planning". Journal of Advanced Transportation 2020 (24 de julio de 2020): 1–14. http://dx.doi.org/10.1155/2020/1360491.
Texto completoXu, Yang, Xiang Li y Ming Liu. "Modeling and Simulation of Complex Network Attributes on Coordinating Large Multiagent System". Scientific World Journal 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/412479.
Texto completoSzymak, Piotr. "Comparison of Centralized, Dispersed and Hybrid Multiagent Control Systems of Underwater Vehicles Team". Solid State Phenomena 180 (noviembre de 2011): 114–21. http://dx.doi.org/10.4028/www.scientific.net/ssp.180.114.
Texto completoTesis sobre el tema "Multiagent decision"
Burkov, Andriy. "Leveraging Repeated Games for Solving Complex Multiagent Decision Problems". Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28028/28028.pdf.
Texto completoMaking good decisions in multiagent environments is a hard problem in the sense that the presence of several decision makers implies conflicts of interests, a lack of coordination, and a multiplicity of possible decisions. If, then, the same decision makers interact continuously through time, they have to decide not only what to do in the present, but also how their present decisions may affect the behavior of the others in the future. Game theory is a mathematical tool that aims to model such interactions as strategic games of multiple players. Therefore, multiagent decision problems are often studied using game theory. In this context, and being restricted to dynamic games, complex multiagent decision problems can be algorithmically approached. The contribution of this thesis is three-fold. First, this thesis contributes an algorithmic framework for distributed planning in non-cooperative dynamic games. The multiplicity of possible plans is a matter of serious complications for any planning approach. We propose a novel approach based on the concept of learning in repeated games. Our approach permits overcoming the aforementioned complications by means of communication between players. We then propose a learning algorithm for repeated game self-play. Our algorithm allows players to converge, in an initially unknown repeated game, to a joint behavior optimal in a certain, well-defined sense, without communication between players. Finally, we propose a family of algorithms for approximately solving dynamic games, and for extracting equilibrium strategy profiles. In this context, we first propose a method to compute a nonempty subset of approximate subgame-perfect equilibria in repeated games. We then demonstrate how to extend this method for approximating all subgame-perfect equilibria in repeated games, and also for solving more complex dynamic games.
Gasparini, Luca. "Severity sensitive norm analysis and decision making". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231873.
Texto completoSosnowski, Scott T. "Approximate Action Selection For Large, Coordinating, Multiagent Systems". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459468867.
Texto completoStamatopoulou, Anastasia. "AGGREGATION IN MULTIAGENT AND MULTICRITERIA DECISION MODELS: INTERACTION, DYNAMICS, AND MAXIMUM ENTROPY WEIGHTS IN THE FRAMEWORK OF CHOQUET INTEGRATION". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/311987.
Texto completoStamatopoulou, Anastasia. "AGGREGATION IN MULTIAGENT AND MULTICRITERIA DECISION MODELS: INTERACTION, DYNAMICS, AND MAXIMUM ENTROPY WEIGHTS IN THE FRAMEWORK OF CHOQUET INTEGRATION". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/311987.
Texto completoWarden, Tobias [Verfasser], Otthein [Akademischer Betreuer] Herzog, Otthein [Gutachter] Herzog y Winfried [Gutachter] Lamersdorf. "Interactive Multiagent Adaptation of Individual Classification Models for Decision Support / Tobias Warden ; Gutachter: Otthein Herzog, Winfried Lamersdorf ; Betreuer: Otthein Herzog". Bremen : Staats- und Universitätsbibliothek Bremen, 2019. http://d-nb.info/1199003611/34.
Texto completoBarfuss, Wolfram. "Learning dynamics and decision paradigms in social-ecological dilemmas". Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20127.
Texto completoCollective action is required to enter sustainable development pathways in coupled social-ecological systems, safely away from dangerous tipping elements. Without denying the usefulness of other model design principles, this thesis proposes the agent-environment interface as the mathematical foundation for the design of social-ecological system models. First, this work refines techniques from the statistical physics literature on learning dynamics to derive a deterministic limit of established reinforcement learning algorithms from artificial intelligence research. Illustrations of the resulting learning dynamics reveal a wide range of different dynamical regimes, such as fixed points, periodic orbits and deterministic chaos. Second, the derived multi-state learning equations are applied to a newly introduced environment, the Ecological Public Good. It models a coupled social-ecological dilemma, extending established repeated social dilemma games by an ecological tipping element. Known theoretical and empirical results are reproduced and novel qualitatively different parameter regimes are discovered, including one in which these reward-optimizing agents prefer to collectively suffer in environmental collapse rather than cooperating in a prosperous environment. Third, this thesis challenges the reward optimizing paradigm of the learning equations. It presents a novel formal comparison of the three decision paradigms of economic optimization, sustainability and safety for the governance of an environmental tipping element. It is shown that no paradigm guarantees fulfilling requirements imposed by another paradigm. Further, the absence of a master paradigm is shown to be of special relevance for governing the climate system, since the latter may reside at the edge between parameter regimes where economic welfare optimization becomes neither sustainable nor safe.
Serramia, Amoros Marc. "Value-aligned norm selection". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672634.
Texto completoLes normes s’utilitzen àmpliament en societats tant d'humans com d'agents per a regular les accions dels seus individus. Tanmateix, tot i que els legisladors poden estar considerant aspectes ètics de forma intrínseca en definir normes, aquests aspectes no són usualment considerats de forma explícita. Aquesta tesi avança l'estat de l'art en sistemes multiagent normatius formalitzant mètodes quantitatius i qualitatius per seleccionar normes basant-se en els valors morals i les preferències sobre aquests valors. Anomenem aquest procés: selecció de normes alineades als valors. L’aproximació quantitativa a la selecció de normes alineades als valors està basada en la literatura d'ètica. Arran de l'estudi de les relacions entre normes, accions i valors que es fa a la literatura, proposem una definició formal de les relacions entre accions i valors a través de les funcions de judici, i de les relacions entre normes i valors a través de les funcions de promoció. Utilitzem aquestes funcions per calcular l’alineament d’un conjunt de normes amb els valors. D'aquesta manera, la selecció de normes consisteix a trobar el conjunt de normes que maximitzin l’alineament amb els valors. Tot i que les resolucions basades en utilitats són comunes en la presa de decisions, especificar utilitats pot ser una tasca difícil o impossible. Per exemple, no és fàcil avaluar numèricament l'impacte d'una norma sobre un valor. En termes més generals, la selecció d’alguns elements d'un conjunt de candidats, sol estar guiada per criteris de decisió. Identifiquem aquesta família de problemes que anomenem problemes de selecció del conjunt dominant. Proposem dues resolucions per a aquests problemes depenent de com s'especifiquen les relacions entre els elements i els criteris de decisió. Les dues resolucions transformen les preferències sobre criteris en preferències sobre conjunts d'elements. Ho fem en dos passos: (i) transformem les preferències sobre criteris en preferències sobre elements; i (ii) transformem les preferències sobre elements en preferències sobre conjunts d'aquests elements. La solució és el conjunt més preferit. Com que el problema de selecció de normes és una instància de la família de problemes de selecció del conjunt dominant, podem adaptar aquestes resolucions per a la selecció de normes.
Vieira, Fábio Lopes. "UM SISTEMA MULTIAGENTE PARA APOIO AS DECISÕES NO PROCESSO DE LICITAÇÃO PÚBLICA". Universidade Federal do Maranhão, 2013. http://tedebc.ufma.br:8080/jspui/handle/tede/499.
Texto completoPublic licitation is an administrative process which goal is to purchase goods or services to the sectors belonging to the public administration and follow the rules of law no. 8.666/93. In this process public officials need to take decisions such as choosing the type and modality of the licitation. Due to the complexity of the law governing the licitation process and the great possibilities of conducting the licitation process in different scenarios and also its dynamism in the face of constant changes in legislation, we developed a multi-agent system to optimize the decisions of those responsible for acquiring goods and services for the public administration. A Multiagent System is a system composed of several agents that communicate and are collectively capable of achieving goals that they would not be able to meet separately. The complexity of these systems is approached through interactions between agents. We used the exchange messages architecture, where agents communicate directly with each other through asynchronous messages using a chat protocol, which sets the rules and enforces the formalism necessary for messages to be sent and understood by the agents. To specify the system we adopted MADAE-Pro, a process which guides the development of multi-agent systems through the phases of specification, design and implementation.
A licitação pública é um processo administrativo cujo objetivo é a compra de bens ou serviços para os órgãos pertencentes à Administração Pública e segue as normas da lei nº. 8.666/93. Nesse processo há necessidade de que os agentes públicos envolvidos tomem decisões como a escolha do tipo e da modalidade da licitação. Devido a complexidade da Lei que regula o processo de licitação e às inúmeras possibilidades de condução do processo licitatório em diversos cenários e também a seu dinamismo, diante das constantes alterações na legislação; foi desenvolvido um sistema multiagente para o processo de licitação pública visando otimizar a tomada de decisões dos responsáveis pela aquisição dos bens e serviços na Administração Pública. Um Sistema Multiagente é um sistema composto por vários agentes que se comunicam e são coletivamente capazes de atingir objetivos que não seriam capazes de satisfazer separadamente. A complexidade destes sistemas é abordada através das interações entre os agentes, ou seja, cada agente pode executar, dentro de suas limitações, uma tarefa simples, mas a boa coordenação da execução dessas tarefas simples por cada agente torna o sistema capaz de executar tarefas de grande complexidade. Foi utilizada a arquitetura de troca de mensagem entre agentes, onde os agentes se comunicam diretamente uns com os outros, através de mensagens assíncronas, utilizando um protocolo de conversação, o qual dita as regras e impõe o formalismo necessário para que as mensagens sejam encaminhadas e compreendidas pelos agentes. Para fazer a especificação do sistema, adotou-se o MADAEPro, um processo que guia o desenvolvimento de um sistema multiagente nas fases de especificação, projeto e implementação.
Sotnik, Garry. "SOSIEL: a Cognitive, Multi-Agent, and Knowledge-Based Platform for Modeling Boundedly-Rational Decision-Making". PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4239.
Texto completoLibros sobre el tema "Multiagent decision"
Ventre, Aldo G. S., Antonio Maturo, Šárka Hošková-Mayerová y Janusz Kacprzyk, eds. Multicriteria and Multiagent Decision Making with Applications to Economics and Social Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35635-3.
Texto completoVentre, Aldo G. S. Multicriteria and Multiagent Decision Making with Applications to Economics and Social Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoAnders, Rantzer y SpringerLink (Online service), eds. Distributed Decision Making and Control. London: Springer London, 2012.
Buscar texto completoJane, Doan, ed. Choosing to learn: Ownership and responsibility in a primary multiage classroom. Portsmouth, NH: Heinemann, 1996.
Buscar texto completoProbabilistic Reasoning in Multiagent Systems. Cambridge University Press, 2002.
Buscar texto completoMaturo, Antonio, Aldo G. S. Ventre y Šárka Hošková-Mayerová. Multicriteria and Multiagent Decision Making with Applications to Economics and Social Sciences. Springer, 2013.
Buscar texto completoMulticriteria and Multiagent Decision Making with Applications to Economics and Social Sciences. Springer, 2013.
Buscar texto completoKacprzyk, Janusz, Antonio Maturo, Aldo G. S. Ventre y Šárka Hošková-Mayerová. Multicriteria and Multiagent Decision Making with Applications to Economics and Social Sciences. Springer, 2015.
Buscar texto completoXiang, Yang. Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach. Cambridge University Press, 2010.
Buscar texto completoProbabilistic Reasoning in Multiagent Systems: A Graphical Models Approach. Cambridge University Press, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Multiagent decision"
Schröter, Kay y Diemo Urbig. "C-IPS: Specifying Decision Interdependencies in Negotiations". En Multiagent System Technologies, 114–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30082-3_9.
Texto completoXiang, Yang y Frank Hanshar. "Multiagent Decision by Partial Evaluation". En Advances in Artificial Intelligence, 242–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30353-1_21.
Texto completoBrandt, Felix. "Tournament Solutions and Their Applications to Multiagent Decision Making". En Multiagent System Technologies, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16178-0_1.
Texto completoRichter, Jan, Matthias Klusch y Ryszard Kowalczyk. "Monotonic Mixing of Decision Strategies for Agent-Based Bargaining". En Multiagent System Technologies, 113–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24603-6_12.
Texto completoLópez, Beatriz, Carles Pous, Pablo Gay y Albert Pla. "Multi Criteria Decision Methods for Coordinating Case-Based Agents". En Multiagent System Technologies, 54–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04143-3_6.
Texto completoSchwaiger, Arndt y Björn Stahmer. "SimMarket: Multiagent-Based Customer Simulation and Decision Support for Category Management". En Multiagent System Technologies, 74–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39869-1_7.
Texto completoNg, Zhan Sheng, Aaron Yu Siang Tan, Arief Adhitya y Rajagopalan Srinivasan. "Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises". En Multiagent System Technologies, 103–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04143-3_10.
Texto completoGuttmann, Christian. "Towards a Taxonomy of Decision Making Problems in Multi-Agent Systems". En Multiagent System Technologies, 195–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04143-3_19.
Texto completoWidmer, Tobias y Marc Premm. "Agent-Based Decision Support for Allocating Caregiving Resources in a Dementia Scenario". En Multiagent System Technologies, 233–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27343-3_13.
Texto completoGüneş, Taha D., Timothy J. Norman y Long Tran-Thanh. "Budget Limited Trust-Aware Decision Making". En Autonomous Agents and Multiagent Systems, 101–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71679-4_7.
Texto completoActas de conferencias sobre el tema "Multiagent decision"
Campbell, Trevor, Luke Johnson y Jonathan P. How. "Multiagent allocation of Markov decision process tasks". En 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580186.
Texto completoXuan, Ping. "Modeling plan coordination in multiagent decision processes". En the 6th international joint conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1329125.1329396.
Texto completoRigopoulos, G., J. Psarras y N. V. Karadimas. "A Multiagent Model For Group Decision Support". En 21st Conference on Modelling and Simulation. ECMS, 2007. http://dx.doi.org/10.7148/2007-0096.
Texto completoYucelen, Tansel y John Daniel Peterson. "Active-passive networked multiagent systems". En 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7040479.
Texto completoKumar, Akshat. "Multiagent Decision Making and Learning in Urban Environments". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/895.
Texto completoCzibula, Gabriela, Adriana Mihaela Guran, Grigoreta Sofia Cojocar y Istvan Gergely Czibula. "Multiagent Decision Support Systems based on Supervised Learning". En 2008 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2008). IEEE, 2008. http://dx.doi.org/10.1109/aqtr.2008.4588943.
Texto completoColeman, Norman, Ching-Fang Lin, Jianhua Ge y Sarah Braasch. "Intelligent multiagent modeling and decision system for battlefield". En Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3992.
Texto completoTounsi, Jihene, Julien Boissiere y Georges Habchi. "Multiagent Decision Making For SME Supply Chain Simulation". En 23rd European Conference on Modelling and Simulation. ECMS, 2009. http://dx.doi.org/10.7148/2009-0203-0210.
Texto completoTounsi, Jihene, Julien Boissiere y Georges Habchi. "Multiagent Decision Making For SME Supply Chain Simulation". En 23rd European Conference on Modelling and Simulation. ECMS, 2009. http://dx.doi.org/10.7148/2009-0203-0211.
Texto completoUzhva, Denis, Oleg Granichin y Olga Granichina. "Compressed Cluster Sensing in Multiagent IoT Control". En 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992703.
Texto completoInformes sobre el tema "Multiagent decision"
David, Gabrielle, D. Somerville, Julia McCarthy, Spencer MacNeil, Faith Fitzpatrick, Ryan Evans y David Wilson. Technical guide for the development, evaluation, and modification of stream assessment methods for the Corps Regulatory Program. Engineer Research and Development Center (U.S.), octubre de 2021. http://dx.doi.org/10.21079/11681/42182.
Texto completo