Literatura académica sobre el tema "Multi-stain segmentation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multi-stain segmentation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multi-stain segmentation"
Hassan, Loay, Mohamed Abdel-Nasser, Adel Saleh, Osama A. Omer y Domenec Puig. "Efficient Stain-Aware Nuclei Segmentation Deep Learning Framework for Multi-Center Histopathological Images". Electronics 10, n.º 8 (16 de abril de 2021): 954. http://dx.doi.org/10.3390/electronics10080954.
Texto completoAbdel-Nasser, Mohamed, Vivek Kumar Singh y Ehab Mahmoud Mohamed. "Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network". Diagnostics 12, n.º 12 (2 de diciembre de 2022): 3024. http://dx.doi.org/10.3390/diagnostics12123024.
Texto completoXu, Xiaoping, Meirong Ji, Bobin Chen y Guowei Lin. "Analysis on Characteristics of Dysplasia in 345 Patients with Myelodysplastic Syndrome". Blood 112, n.º 11 (16 de noviembre de 2008): 5100. http://dx.doi.org/10.1182/blood.v112.11.5100.5100.
Texto completoAlvarsson, Alexandra, Carl Storey, Brandy Olin Pope, Caleb Stoltzfus, Robert Vierkant, Jessica Tufariello, Aaron Bungum et al. "Abstract 6624: 3D assessment of the lung cancer microenvironment using multi-resolution open-top light-sheet microscopy". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 6624. http://dx.doi.org/10.1158/1538-7445.am2023-6624.
Texto completoSchuerch, Christian, Graham L. Barlow, Salil S. Bhate, Nikolay Samusik, Garry P. Nolan y Yury Goltsev. "Dynamics of the Bone Marrow Microenvironment during Leukemic Progression Revealed By Codex Hyper-Parameter Tissue Imaging". Blood 132, Supplement 1 (29 de noviembre de 2018): 935. http://dx.doi.org/10.1182/blood-2018-99-111708.
Texto completoWarr, Ryan, Stephan Handschuh, Martin Glösmann, Robert J. Cernik y Philip J. Withers. "Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography". Scientific Reports 12, n.º 1 (19 de diciembre de 2022). http://dx.doi.org/10.1038/s41598-022-23592-0.
Texto completoGour, Mahesh, Sweta Jain y T. Sunil Kumar. "Robust nuclei segmentation with encoder‐decoder network from the histopathological images". International Journal of Imaging Systems and Technology 34, n.º 4 (30 de mayo de 2024). http://dx.doi.org/10.1002/ima.23111.
Texto completoHuang, Zhi, Wei Shao, Zhi Han, Ahmad Mahmoud Alkashash, Carlo De la Sancha, Anil V. Parwani, Hiroaki Nitta et al. "Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images". npj Precision Oncology 7, n.º 1 (27 de enero de 2023). http://dx.doi.org/10.1038/s41698-023-00352-5.
Texto completoCazzaniga, Giorgio, Mattia Rossi, Albino Eccher, Ilaria Girolami, Vincenzo L’Imperio, Hien Van Nguyen, Jan Ulrich Becker et al. "Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions". Journal of Nephrology, 28 de septiembre de 2023. http://dx.doi.org/10.1007/s40620-023-01775-w.
Texto completoWarr, Ryan, Evelina Ametova, Robert J. Cernik, Gemma Fardell, Stephan Handschuh, Jakob S. Jørgensen, Evangelos Papoutsellis, Edoardo Pasca y Philip J. Withers. "Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction". Scientific Reports 11, n.º 1 (21 de octubre de 2021). http://dx.doi.org/10.1038/s41598-021-00146-4.
Texto completoTesis sobre el tema "Multi-stain segmentation"
Nisar, Zeeshan. "Self-supervised learning in the presence of limited labelled data for digital histopathology". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Texto completoA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Capítulos de libros sobre el tema "Multi-stain segmentation"
Taixé, L. Leal, A. U. Coskun, B. Rosenhahn y D. H. Brooks. "Automatic Segmentation of Arteries in Multi-stain Histology Images". En IFMBE Proceedings, 2000–2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_531.
Texto completoActas de conferencias sobre el tema "Multi-stain segmentation"
Wang, Ruochan y Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". En 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Texto completoWang, Ruochan y Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". En 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Texto completoGraham, S. y N. M. Rajpoot. "SAMS-NET: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images". En 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363645.
Texto completo