Artículos de revistas sobre el tema "Multi-organ-on-chip"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Multi-organ-on-chip".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zuchowska, Agnieszka y Sandra Skorupska. "Multi-organ-on-chip approach in cancer research". Organs-on-a-Chip 4 (diciembre de 2022): 100014. http://dx.doi.org/10.1016/j.ooc.2021.100014.
Texto completoLungu, Iulia Ioana y Alexandru Mihai Grumezescu. "Microfluidics – Organ-on-chip". Biomedical Engineering International 1, n.º 1 (30 de septiembre de 2019): 2–8. http://dx.doi.org/10.33263/biomed11.002008.
Texto completoPalaninathan, Vivekanandan, Vimal Kumar, Toru Maekawa, Dorian Liepmann, Ramasamy Paulmurugan, Jairam R. Eswara, Pulickel M. Ajayan et al. "Multi-organ on a chip for personalized precision medicine". MRS Communications 8, n.º 03 (13 de agosto de 2018): 652–67. http://dx.doi.org/10.1557/mrc.2018.148.
Texto completoKim, Jinyoung, Junghoon Kim, Yoonhee Jin y Seung-Woo Cho. "In situ biosensing technologies for an organ-on-a-chip". Biofabrication 15, n.º 4 (17 de agosto de 2023): 042002. http://dx.doi.org/10.1088/1758-5090/aceaae.
Texto completoVivas, Aisen, Albert van den Berg, Robert Passier, Mathieu Odijk y Andries D. van der Meer. "Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips". Lab on a Chip 22, n.º 6 (2022): 1231–43. http://dx.doi.org/10.1039/d1lc00999k.
Texto completoSatoh, T., S. Sugiura, K. Shin, R. Onuki-Nagasaki, S. Ishida, K. Kikuchi, M. Kakiki y T. Kanamori. "A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform". Lab on a Chip 18, n.º 1 (2018): 115–25. http://dx.doi.org/10.1039/c7lc00952f.
Texto completoBoeri, Lucia, Luca Izzo, Lorenzo Sardelli, Marta Tunesi, Diego Albani y Carmen Giordano. "Advanced Organ-on-a-Chip Devices to Investigate Liver Multi-Organ Communication: Focus on Gut, Microbiota and Brain". Bioengineering 6, n.º 4 (28 de septiembre de 2019): 91. http://dx.doi.org/10.3390/bioengineering6040091.
Texto completoLoskill, Peter, Thiagarajan Sezhian, Kevin M. Tharp, Felipe T. Lee-Montiel, Shaheen Jeeawoody, Willie Mae Reese, Peter-James H. Zushin, Andreas Stahl y Kevin E. Healy. "WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue". Lab on a Chip 17, n.º 9 (2017): 1645–54. http://dx.doi.org/10.1039/c6lc01590e.
Texto completoZhao, Yi, Ranjith Kankala, Shi-Bin Wang y Ai-Zheng Chen. "Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations". Molecules 24, n.º 4 (14 de febrero de 2019): 675. http://dx.doi.org/10.3390/molecules24040675.
Texto completoSun, Qiyue, Jianghua Pei, Qinyu Li, Kai Niu y Xiaolin Wang. "Reusable Standardized Universal Interface Module (RSUIM) for Generic Organ-on-a-Chip Applications". Micromachines 10, n.º 12 (5 de diciembre de 2019): 849. http://dx.doi.org/10.3390/mi10120849.
Texto completoHuang, Ngan F., Ovijit Chaudhuri, Patrick Cahan, Aijun Wang, Adam J. Engler, Yingxiao Wang, Sanjay Kumar, Ali Khademhosseini y Song Li. "Multi-scale cellular engineering: From molecules to organ-on-a-chip". APL Bioengineering 4, n.º 1 (1 de marzo de 2020): 010906. http://dx.doi.org/10.1063/1.5129788.
Texto completoGoldstein, Yoel, Sarah Spitz, Keren Turjeman, Florian Selinger, Yechezkel Barenholz, Peter Ertl, Ofra Benny y Danny Bavli. "Breaking the Third Wall: Implementing 3D-Printing Techniques to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices". Micromachines 12, n.º 6 (28 de mayo de 2021): 627. http://dx.doi.org/10.3390/mi12060627.
Texto completoSung, Jong Hwan. "Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs". Expert Opinion on Drug Metabolism & Toxicology 17, n.º 8 (5 de abril de 2021): 969–86. http://dx.doi.org/10.1080/17425255.2021.1908996.
Texto completoDehne, Eva-Maria, Tobias Hasenberg, Reyk Horland y Uwe Marx. "Multi-organ on a chip: Human physiology-based assessment of liver toxicity". Toxicology Letters 280 (octubre de 2017): S75. http://dx.doi.org/10.1016/j.toxlet.2017.07.192.
Texto completoMorais, Ana Sofia, Maria Mendes, Marta Agostinho Cordeiro, João J. Sousa, Alberto Canelas Pais, Silvia M. Mihăilă y Carla Vitorino. "Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects". Pharmaceutics 16, n.º 5 (2 de mayo de 2024): 615. http://dx.doi.org/10.3390/pharmaceutics16050615.
Texto completoBaert, Y., I. Ruetschle, W. Cools, A. Oehme, A. Lorenz, U. Marx, E. Goossens y I. Maschmeyer. "A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model". Human Reproduction 35, n.º 5 (1 de mayo de 2020): 1029–44. http://dx.doi.org/10.1093/humrep/deaa057.
Texto completoAn, Fan, Yueyang Qu, Xianming Liu, Runtao Zhong y Yong Luo. "Organ-on-a-Chip: New Platform for Biological Analysis". Analytical Chemistry Insights 10 (enero de 2015): ACI.S28905. http://dx.doi.org/10.4137/aci.s28905.
Texto completoGiampetruzzi, Lucia, Amilcare Barca, Flavio Casino, Simonetta Capone, Tiziano Verri, Pietro Siciliano y Luca Francioso. "Multi-Sensors Integration in a Human Gut-On-Chip Platform". Proceedings 2, n.º 13 (13 de noviembre de 2018): 1022. http://dx.doi.org/10.3390/proceedings2131022.
Texto completoCecen, Berivan, Christina Karavasili, Mubashir Nazir, Anant Bhusal, Elvan Dogan, Fatemeh Shahriyari, Sedef Tamburaci, Melda Buyukoz, Leyla Didem Kozaci y Amir K. Miri. "Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives". Pharmaceutics 13, n.º 10 (11 de octubre de 2021): 1657. http://dx.doi.org/10.3390/pharmaceutics13101657.
Texto completoBasak, Sayan. "Unlocking the future: converging multi-organ-on-a-chip on the current biomedical sciences". Emergent Materials 3, n.º 5 (22 de septiembre de 2020): 693–709. http://dx.doi.org/10.1007/s42247-020-00124-y.
Texto completoKim, Gyeong-Ji, Kwon-Jai Lee, Jeong-Woo Choi y Jeung Hee An. "Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture". International Journal of Molecular Sciences 22, n.º 13 (29 de junio de 2021): 6997. http://dx.doi.org/10.3390/ijms22136997.
Texto completoPalama, E., M. Aiello y S. Scaglione. "200P A novel multi-organ on chip model for metastatic tumor biology understanding". Immuno-Oncology and Technology 20 (diciembre de 2023): 100676. http://dx.doi.org/10.1016/j.iotech.2023.100676.
Texto completoBovard, David, Anita Iskandar, Karsta Luettich, Julia Hoeng y Manuel C. Peitsch. "Organs-on-a-chip". Toxicology Research and Application 1 (1 de enero de 2017): 239784731772635. http://dx.doi.org/10.1177/2397847317726351.
Texto completoDornhof, Johannes, Jochen Kieninger, Harshini Muralidharan, Jochen Maurer, Gerald A. Urban y Andreas Weltin. "Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures". Lab on a Chip 22, n.º 2 (2022): 225–39. http://dx.doi.org/10.1039/d1lc00689d.
Texto completoFanizza, Francesca, Marzia Campanile, Gianluigi Forloni, Carmen Giordano y Diego Albani. "Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders". Journal of Tissue Engineering 13 (enero de 2022): 204173142210953. http://dx.doi.org/10.1177/20417314221095339.
Texto completoSoragni, Camilla, Gwenaëlle Rabussier, Leon J. de Windt, Sebastian J. Trietsch, Henriëtte L. Lanz y Chee P. Ng. "High throughput assay to quantify oxidative stress in organ-on-a-chip placenta models in a multi-chip platform". Placenta 112 (septiembre de 2021): e26. http://dx.doi.org/10.1016/j.placenta.2021.07.087.
Texto completoImparato, Giorgia, Francesco Urciuolo y Paolo Antonio Netti. "Organ on Chip Technology to Model Cancer Growth and Metastasis". Bioengineering 9, n.º 1 (11 de enero de 2022): 28. http://dx.doi.org/10.3390/bioengineering9010028.
Texto completoWang, Ying I., Carlota Oleaga, Christopher J. Long, Mandy B. Esch, Christopher W. McAleer, Paula G. Miller, James J. Hickman y Michael L. Shuler. "Self-contained, low-cost Body-on-a-Chip systems for drug development". Experimental Biology and Medicine 242, n.º 17 (17 de febrero de 2017): 1701–13. http://dx.doi.org/10.1177/1535370217694101.
Texto completoZommiti, Mohamed, Nathalie Connil, Ali Tahrioui, Anne Groboillot, Corinne Barbey, Yoan Konto-Ghiorghi, Olivier Lesouhaitier, Sylvie Chevalier y Marc G. J. Feuilloley. "Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation". Bioengineering 9, n.º 11 (3 de noviembre de 2022): 646. http://dx.doi.org/10.3390/bioengineering9110646.
Texto completoRibeiro, Mafalda, Pamela Ali, Benjamin Metcalfe, Despina Moschou y Paulo R. F. Rocha. "Microfluidics Integration into Low-Noise Multi-Electrode Arrays". Micromachines 12, n.º 6 (20 de junio de 2021): 727. http://dx.doi.org/10.3390/mi12060727.
Texto completoShinha, Kenta, Wataru Nihei, Tatsuto Ono, Ryota Nakazato y Hiroshi Kimura. "A pharmacokinetic–pharmacodynamic model based on multi-organ-on-a-chip for drug–drug interaction studies". Biomicrofluidics 14, n.º 4 (julio de 2020): 044108. http://dx.doi.org/10.1063/5.0011545.
Texto completoYen, Daniel P., Yuta Ando y Keyue Shen. "A cost-effective micromilling platform for rapid prototyping of microdevices". TECHNOLOGY 04, n.º 04 (diciembre de 2016): 234–39. http://dx.doi.org/10.1142/s2339547816200041.
Texto completoCameron, Tiffany C., Avineet Randhawa, Samantha M. Grist, Tanya Bennet, Jessica Hua, Luis G. Alde, Tara M. Caffrey, Cheryl L. Wellington y Karen C. Cheung. "PDMS Organ-On-Chip Design and Fabrication: Strategies for Improving Fluidic Integration and Chip Robustness of Rapidly Prototyped Microfluidic In Vitro Models". Micromachines 13, n.º 10 (22 de septiembre de 2022): 1573. http://dx.doi.org/10.3390/mi13101573.
Texto completoShanti, Aya, Bisan Samara, Amal Abdullah, Nicholas Hallfors, Dino Accoto, Jiranuwat Sapudom, Aseel Alatoom, Jeremy Teo, Serena Danti y Cesare Stefanini. "Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development". Pharmaceutics 12, n.º 5 (19 de mayo de 2020): 464. http://dx.doi.org/10.3390/pharmaceutics12050464.
Texto completoAbu-Dawas, Sadeq, Hawra Alawami, Mohammed Zourob y Qasem Ramadan. "Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly". Micromachines 12, n.º 12 (11 de diciembre de 2021): 1542. http://dx.doi.org/10.3390/mi12121542.
Texto completoLee, Hyuna, Dae Shik Kim, Sang Keun Ha, Inwook Choi, Jong Min Lee y Jong Hwan Sung. "A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model". Biotechnology and Bioengineering 114, n.º 2 (14 de septiembre de 2016): 432–43. http://dx.doi.org/10.1002/bit.26087.
Texto completoGrigorev, Georgii V., Alexander V. Lebedev, Xiaohao Wang, Xiang Qian, George V. Maksimov y Liwei Lin. "Advances in Microfluidics for Single Red Blood Cell Analysis". Biosensors 13, n.º 1 (9 de enero de 2023): 117. http://dx.doi.org/10.3390/bios13010117.
Texto completoSafarzadeh, Melody, Lauren S. Richardson, Ananth Kumar Kammala, Angela Mosebarger, Mohamed Bettayeb, Sungjin Kim, Po Yi Lam, Enkhtuya Radnaa, Arum Han y Ramkumar Menon. "A multi-organ, feto-maternal interface organ-on-chip, models pregnancy pathology and is a useful preclinical extracellular vesicle drug trial platform". Extracellular Vesicle 3 (junio de 2024): 100035. http://dx.doi.org/10.1016/j.vesic.2024.100035.
Texto completoTunesi, Marta, Luca Izzo, Ilaria Raimondi, Diego Albani y Carmen Giordano. "A miniaturized hydrogel-based in vitro model for dynamic culturing of human cells overexpressing beta-amyloid precursor protein". Journal of Tissue Engineering 11 (enero de 2020): 204173142094563. http://dx.doi.org/10.1177/2041731420945633.
Texto completoSticker, Drago, Mario Rothbauer, Sarah Lechner, Marie-Therese Hehenberger y Peter Ertl. "Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications". Lab on a Chip 15, n.º 24 (2015): 4542–54. http://dx.doi.org/10.1039/c5lc01028d.
Texto completoPrete, Alessandro, Antonio Matrone y Roberto Plebani. "State of the Art in 3D Culture Models Applied to Thyroid Cancer". Medicina 60, n.º 4 (22 de marzo de 2024): 520. http://dx.doi.org/10.3390/medicina60040520.
Texto completovan Berlo, Damiën, Evita van de Steeg, Hossein Eslami Amirabadi y Rosalinde Masereeuw. "The potential of multi-organ-on-chip models for assessment of drug disposition as alternative to animal testing". Current Opinion in Toxicology 27 (septiembre de 2021): 8–17. http://dx.doi.org/10.1016/j.cotox.2021.05.001.
Texto completoRajan, Shiny Amala Priya, Julio Aleman, MeiMei Wan, Nima Pourhabibi Zarandi, Goodwell Nzou, Sean Murphy, Colin E. Bishop et al. "Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform". Acta Biomaterialia 106 (abril de 2020): 124–35. http://dx.doi.org/10.1016/j.actbio.2020.02.015.
Texto completoKonopka, Joanna, Dominik Kołodziejek, Magdalena Flont, Agnieszka Żuchowska, Elżbieta Jastrzębska y Zbigniew Brzózka. "Exploring Endothelial Expansion on a Chip". Sensors 22, n.º 23 (2 de diciembre de 2022): 9414. http://dx.doi.org/10.3390/s22239414.
Texto completoOleaga, Carlota, Anne Riu, Sandra Rothemund, Andrea Lavado, Christopher W. McAleer, Christopher J. Long, Keisha Persaud et al. "Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system". Biomaterials 182 (noviembre de 2018): 176–90. http://dx.doi.org/10.1016/j.biomaterials.2018.07.062.
Texto completoPoloznikov, A. A. "MicroRNA Pattern of Culture Medium as a Substrate for the Analysis of Lysis of Cell Subpopulations in Multiorgan Cell Models". Biotekhnologiya 37, n.º 2 (2021): 76–80. http://dx.doi.org/10.21519/0234-2758-2021-37-2-76-80.
Texto completoFedi, Arianna, Chiara Vitale, Marco Fato y Silvia Scaglione. "A Human Ovarian Tumor & Liver Organ-on-Chip for Simultaneous and More Predictive Toxo-Efficacy Assays". Bioengineering 10, n.º 2 (18 de febrero de 2023): 270. http://dx.doi.org/10.3390/bioengineering10020270.
Texto completoSafarzadeh, Melody, Lauren Richardson, Ananth Kumar Kammala, Angela Mosebarger, Mohamed Bettayeb, Enkhtuya Radnaa, Sungjin Kim, Po Yi Lam, Arum Han y RamKumar Menon. "306 A multi-organ-on-chip model to study the efficacy of exosomal therapeutics in treating inflammation-associated adverse pregnancies". American Journal of Obstetrics and Gynecology 230, n.º 1 (enero de 2024): S175. http://dx.doi.org/10.1016/j.ajog.2023.11.328.
Texto completoSafarzadeh, Melody, Lauren Richardson, Ananth Kumar Kammala, Enkhtuya Radnaa, Sungjin Kim, Po Yi Lam, Arum Han y RamKumar Menon. "305 A multi-organ fetal membrane-placenta-on-chip platform to study the transmission of infection and inflammation during pregnancy". American Journal of Obstetrics and Gynecology 230, n.º 1 (enero de 2024): S174—S175. http://dx.doi.org/10.1016/j.ajog.2023.11.327.
Texto completoDíaz Lantada, Andrés, Wilhelm Pfleging, Heino Besser, Markus Guttmann, Markus Wissmann, Klaus Plewa, Peter Smyrek, Volker Piotter y Josefa García-Ruíz. "Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips". Polymers 10, n.º 11 (7 de noviembre de 2018): 1238. http://dx.doi.org/10.3390/polym10111238.
Texto completo