Literatura académica sobre el tema "Multi-multi instance learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multi-multi instance learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multi-multi instance learning"
Zhou, Zhi-Hua, Min-Ling Zhang, Sheng-Jun Huang y Yu-Feng Li. "Multi-instance multi-label learning". Artificial Intelligence 176, n.º 1 (enero de 2012): 2291–320. http://dx.doi.org/10.1016/j.artint.2011.10.002.
Texto completoBriggs, Forrest, Xiaoli Z. Fern, Raviv Raich y Qi Lou. "Instance Annotation for Multi-Instance Multi-Label Learning". ACM Transactions on Knowledge Discovery from Data 7, n.º 3 (1 de septiembre de 2013): 1–30. http://dx.doi.org/10.1145/2513092.2500491.
Texto completoBriggs, Forrest, Xiaoli Z. Fern, Raviv Raich y Qi Lou. "Instance Annotation for Multi-Instance Multi-Label Learning". ACM Transactions on Knowledge Discovery from Data 7, n.º 3 (septiembre de 2013): 1–30. http://dx.doi.org/10.1145/2500491.
Texto completoHuang, Sheng-Jun, Wei Gao y Zhi-Hua Zhou. "Fast Multi-Instance Multi-Label Learning". IEEE Transactions on Pattern Analysis and Machine Intelligence 41, n.º 11 (1 de noviembre de 2019): 2614–27. http://dx.doi.org/10.1109/tpami.2018.2861732.
Texto completoPei, Yuanli y Xiaoli Z. Fern. "Constrained instance clustering in multi-instance multi-label learning". Pattern Recognition Letters 37 (febrero de 2014): 107–14. http://dx.doi.org/10.1016/j.patrec.2013.07.002.
Texto completoXing, Yuying, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zili Zhang y Maozu Guo. "Multi-View Multi-Instance Multi-Label Learning Based on Collaborative Matrix Factorization". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 5508–15. http://dx.doi.org/10.1609/aaai.v33i01.33015508.
Texto completoOhkura, Kazuhiro y Ryota Washizaki. "Robust Instance-Based Reinforcement Learning for Multi-Robot Systems(Multi-agent and Learning,Session: TP2-A)". Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2004.4 (2004): 51. http://dx.doi.org/10.1299/jsmeicam.2004.4.51_1.
Texto completoSun, Yu-Yin, Michael Ng y Zhi-Hua Zhou. "Multi-Instance Dimensionality Reduction". Proceedings of the AAAI Conference on Artificial Intelligence 24, n.º 1 (3 de julio de 2010): 587–92. http://dx.doi.org/10.1609/aaai.v24i1.7700.
Texto completoJIANG, Yuan, Zhi-Hua ZHOU y Yue ZHU. "Multi-instance multi-label new label learning". SCIENTIA SINICA Informationis 48, n.º 12 (1 de diciembre de 2018): 1670–80. http://dx.doi.org/10.1360/n112018-00143.
Texto completoWang, Wei y ZhiHua Zhou. "Learnability of multi-instance multi-label learning". Chinese Science Bulletin 57, n.º 19 (28 de abril de 2012): 2488–91. http://dx.doi.org/10.1007/s11434-012-5133-z.
Texto completoTesis sobre el tema "Multi-multi instance learning"
Foulds, James Richard. "Learning Instance Weights in Multi-Instance Learning". The University of Waikato, 2008. http://hdl.handle.net/10289/2460.
Texto completoDong, Lin. "A Comparison of Multi-instance Learning Algorithms". The University of Waikato, 2006. http://hdl.handle.net/10289/2453.
Texto completoXu, Xin. "Statistical Learning in Multiple Instance Problems". The University of Waikato, 2003. http://hdl.handle.net/10289/2328.
Texto completoWang, Wei. "Event Detection and Extraction from News Articles". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82238.
Texto completoPh. D.
Wang, Xiaoguang. "Design and Analysis of Techniques for Multiple-Instance Learning in the Presence of Balanced and Skewed Class Distributions". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32184.
Texto completoMelki, Gabriella A. "Novel Support Vector Machines for Diverse Learning Paradigms". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5630.
Texto completoQuispe, Sonia Castelo. "Uma abordagem visual para apoio ao aprendizado multi-instâncias". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11012016-095352/.
Texto completoMultiple-instance learning (MIL) is a paradigm of machine learning that aims at classifying a set (bags) of objects (instances), assigning labels only to the bags. In MIL, only the labels of bags are available for training while the labels of instances in bags are unknown. This problem is often addressed by selecting an instance to represent each bag, transforming a MIL problem into a standard supervised learning. However, there is no user support to assess this process. In this work, we propose a multi-scale tree-based visualization called MILTree that supports users in tasks related to MIL, and also two new instance selection methods called MILTree-SI and MILTree-Med to improve MIL models. MILTree is a two-level tree layout, where the first level projects bags, and the second level projects the instances belonging to each bag, allowing the user to understand the data multi-instance in an intuitive way. The developed selection methods define instance prototypes of each bag, which is important to achieve high accuracy in multi-instance classification. Both methods use the MILTree layout to visually update instance prototypes and can handle binary and multiple-class datasets. In order to classify the bags we use a SVM classifier. Moreover, with support of MILTree layout one can also update the classification model by changing the training set in order to obtain a better classifier. Experimental results validate the effectiveness of our approach, showing that visual mining by MILTree can help the users in MIL classification scenarios.
Zoghlami, Manel. "Multiple instance learning for sequence data : Application on bacterial ionizing radiation resistance prediction". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC078.
Texto completoIn Multiple Instance Learning (MIL) problem for sequence data, the instances inside the bags aresequences. In some real world applications such as bioinformatics, comparing a random couple ofsequences makes no sense. In fact, each instance may have structural and/or functional relationshipwith instances of other bags. Thus, the classification task should take into account this across bagrelationship. In this thesis, we present two novel MIL approaches for sequence data classificationnamed ABClass and ABSim. ABClass extracts motifs from related instances and use them to encodesequences. A discriminative classifier is then applied to compute a partial classification result for eachset of related sequences. ABSim uses a similarity measure to discriminate the related instances andto compute a scores matrix. For both approaches, an aggregation method is applied in order togenerate the final classification result. We applied both approaches to the problem of bacterialionizing radiation resistance prediction. The experimental results were satisfactory
Dickens, James. "Depth-Aware Deep Learning Networks for Object Detection and Image Segmentation". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42619.
Texto completoHuebner, Uwe. "Workshop: INFRASTRUKTUR DER ¨DIGITALEN UNIVERSIAET¨". Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000692.
Texto completoCapítulos de libros sobre el tema "Multi-multi instance learning"
Vluymans, Sarah. "Multi-instance Learning". En Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods, 131–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04663-7_6.
Texto completoFürnkranz, Johannes, Philip K. Chan, Susan Craw, Claude Sammut, William Uther, Adwait Ratnaparkhi, Xin Jin et al. "Multi-Instance Learning". En Encyclopedia of Machine Learning, 701–10. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_569.
Texto completoRay, Soumya, Stephen Scott y Hendrik Blockeel. "Multi-Instance Learning". En Encyclopedia of Machine Learning and Data Mining, 864–75. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_955.
Texto completoHerrera, Francisco, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarragó y Sarah Vluymans. "Multi-instance Classification". En Multiple Instance Learning, 35–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47759-6_3.
Texto completoHerrera, Francisco, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarragó y Sarah Vluymans. "Multi-instance Regression". En Multiple Instance Learning, 127–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47759-6_6.
Texto completoRetz, Robert y Friedhelm Schwenker. "Active Multi-Instance Multi-Label Learning". En Analysis of Large and Complex Data, 91–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25226-1_8.
Texto completoHerrera, Francisco, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarragó y Sarah Vluymans. "Imbalanced Multi-instance Data". En Multiple Instance Learning, 191–208. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47759-6_9.
Texto completoLi, Chenguang, Ying Yin, Yuhai Zhao, Guang Chen y Libo Qin. "Multi-instance Multi-label Learning by Extreme Learning Machine". En Proceedings in Adaptation, Learning and Optimization, 325–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28373-9_28.
Texto completoZhou, Zhi-Hua y Min-Ling Zhang. "Ensembles of Multi-instance Learners". En Machine Learning: ECML 2003, 492–502. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39857-8_44.
Texto completoTibo, Alessandro, Paolo Frasconi y Manfred Jaeger. "A Network Architecture for Multi-Multi-Instance Learning". En Machine Learning and Knowledge Discovery in Databases, 737–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_44.
Texto completoActas de conferencias sobre el tema "Multi-multi instance learning"
Zhang, Ya-Lin y Zhi-Hua Zhou. "Multi-Instance Learning with Key Instance Shift". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/481.
Texto completoXing, Yuying, Guoxian Yu, Jun Wang, Carlotta Domeniconi y Xiangliang Zhang. "Weakly-Supervised Multi-view Multi-instance Multi-label Learning". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/432.
Texto completoHuang, Sheng-Jun, Nengneng Gao y Songcan Chen. "Multi-instance multi-label active learning". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/262.
Texto completoPham, Anh T. y Raviv Raich. "Kernel-based instance annotation in multi-instance multi-label learning". En 2014 IEEE 24th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2014. http://dx.doi.org/10.1109/mlsp.2014.6958876.
Texto completoXu, Ye, Wei Ping y Andrew T. Campbell. "Multi-instance Metric Learning". En 2011 IEEE 11th International Conference on Data Mining (ICDM). IEEE, 2011. http://dx.doi.org/10.1109/icdm.2011.106.
Texto completoBlockeel, Hendrik, David Page y Ashwin Srinivasan. "Multi-instance tree learning". En the 22nd international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1102351.1102359.
Texto completoWei, Xiu-Shen, Jianxin Wu y Zhi-Hua Zhou. "Scalable Multi-instance Learning". En 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.16.
Texto completoWang, Qifan, Gal Chechik, Chen Sun y Bin Shen. "Instance-Level Label Propagation with Multi-Instance Learning". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/410.
Texto completoHerman, Gunawan, Getian Ye, Yang Wang, Jie Xu y Bang Zhang. "Multi-instance learning with relational information of instances". En 2009 Workshop on Applications of Computer Vision (WACV). IEEE, 2009. http://dx.doi.org/10.1109/wacv.2009.5403078.
Texto completoPham, Anh T., Raviv Raich y Xiaoli Z. Fern. "Efficient instance annotation in multi-instance learning". En 2014 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2014. http://dx.doi.org/10.1109/ssp.2014.6884594.
Texto completoInformes sobre el tema "Multi-multi instance learning"
Ray, Jaideep, Fulton Wang y Christopher Young. A Multi-Instance learning Framework for Seismic Detectors. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1673169.
Texto completoHuang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia y John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, septiembre de 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Texto completo