Literatura académica sobre el tema "Multi-Model ensembles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multi-Model ensembles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multi-Model ensembles"
Solazzo, E., A. Riccio, I. Kioutsioukis y S. Galmarini. "Pauci ex tanto numero: reduce redundancy in multi-model ensembles". Atmospheric Chemistry and Physics 13, n.º 16 (22 de agosto de 2013): 8315–33. http://dx.doi.org/10.5194/acp-13-8315-2013.
Texto completoKioutsioukis, I. y S. Galmarini. "<i>De praeceptis ferendis</i>: good practice in multi-model ensembles". Atmospheric Chemistry and Physics 14, n.º 21 (11 de noviembre de 2014): 11791–815. http://dx.doi.org/10.5194/acp-14-11791-2014.
Texto completoBeusch, Lea, Lukas Gudmundsson y Sonia I. Seneviratne. "Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land". Earth System Dynamics 11, n.º 1 (17 de febrero de 2020): 139–59. http://dx.doi.org/10.5194/esd-11-139-2020.
Texto completoKioutsioukis, I. y S. Galmarini. "<i>De praeceptis ferendis</i>: good practice in multi-model ensembles". Atmospheric Chemistry and Physics Discussions 14, n.º 11 (17 de junio de 2014): 15803–65. http://dx.doi.org/10.5194/acpd-14-15803-2014.
Texto completoFigueiredo, Rui, Kai Schröter, Alexander Weiss-Motz, Mario L. V. Martina y Heidi Kreibich. "Multi-model ensembles for assessment of flood losses and associated uncertainty". Natural Hazards and Earth System Sciences 18, n.º 5 (3 de mayo de 2018): 1297–314. http://dx.doi.org/10.5194/nhess-18-1297-2018.
Texto completoShen, Zhiqiang, Zhankui He y Xiangyang Xue. "MEAL: Multi-Model Ensemble via Adversarial Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4886–93. http://dx.doi.org/10.1609/aaai.v33i01.33014886.
Texto completoLee, Kang, Joo, Kim, Kim y Lee. "Hydrological Modeling Approach Using Radar-Rainfall Ensemble and Multi-Runoff-Model Blending Technique". Water 11, n.º 4 (23 de abril de 2019): 850. http://dx.doi.org/10.3390/w11040850.
Texto completoAbdillah, Abid Famasya, Cornelius Bagus Purnama Putra, Apriantoni Apriantoni, Safitri Juanita y Diana Purwitasari. "Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data". Journal of Information Systems Engineering and Business Intelligence 8, n.º 1 (26 de abril de 2022): 42–50. http://dx.doi.org/10.20473/jisebi.8.1.42-50.
Texto completoMerrifield, Anna Louise, Lukas Brunner, Ruth Lorenz, Iselin Medhaug y Reto Knutti. "An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles". Earth System Dynamics 11, n.º 3 (16 de septiembre de 2020): 807–34. http://dx.doi.org/10.5194/esd-11-807-2020.
Texto completoWilkins, Andrew, Aaron Johnson, Xuguang Wang, Nicholas A. Gasperoni y Yongming Wang. "Multi-Scale Object-Based Probabilistic Forecast Evaluation of WRF-Based CAM Ensemble Configurations". Atmosphere 12, n.º 12 (6 de diciembre de 2021): 1630. http://dx.doi.org/10.3390/atmos12121630.
Texto completoTesis sobre el tema "Multi-Model ensembles"
Sessford, Patrick Denis. "Quantifying sources of variation in multi-model ensembles : a process-based approach". Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18121.
Texto completoSansom, Philip George. "Statistical methods for quantifying uncertainty in climate projections from ensembles of climate models". Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15292.
Texto completoVogt, Linus. "The role of the upper ocean for global ocean heat uptake and climate". Electronic Thesis or Diss., Sorbonne université, 2024. https://theses.hal.science/tel-04951110.
Texto completoThe Earth's climate is currently undergoing rapid and widespread changes. Human activities in the industrial era, in particular the emission of CO2 into the atmosphere through the burning of fossil fuels, have led to an enhanced greenhouse effect which has caused an increase in the global average surface air temperature of 1.1°C in 2011-2020 relative to 1850-1900. A further consequence is the warming of the global ocean: it has absorbed over 90% of the excess energy stored in the Earth system due to the increased radiative forcing. This global ocean heat uptake (OHU) is a critical climate process and plays a dual role for anthropogenic climate change. On the one hand, OHU is a measure of the cumulative effects of transient climate change, and scales with negative impacts such as sea level rise and the frequency of oceanic extreme events. On the other hand, OHU provides a crucial service by shielding the atmosphere from large amounts of heat that would otherwise cause much greater global warming than currently observed. Despite their importance, many of the physical processes controlling OHU are still poorly understood, including in state-of-the-art numerical climate models used for international climate change assessments. In this thesis, we address this problem using climate simulations of models participating in the Coupled Model Intercomparison Project (CMIP). In a first study, we provide improved future projections of global OHU by the end of the 21st century by identifying an emergent relationship across an ensemble of CMIP models linking the simulated baseline climate state of the Southern Hemisphere to future global OHU. By combining this relationship with observational data, we obtain constrained projections showing that future OHU is likely larger than previously thought. In a second study, we clarify the processes involved in setting the ocean heat uptake efficiency (OHUE) which quantifies the amount of OHU per degree of global surface warming. We reconcile a number of previous attempts at explaining controls on OHUE, and show that the upper ocean stratification in the Southern Ocean is a key property setting its value in CMIP climate models. Last, we present an exploratory analysis combining the approaches of these two studies, and perform a statistical analysis of simulations from a large multi-model ensemble with the goal of constraining OHUE. Beyond these concrete results concerning global OHU, we also discuss some of the methodological issues related to the interpretation of uncertainties arising from multi-model ensembles more generally
Tran, Ngo Quoc Huy. "Planification de mouvement pour les systèmes dynamiques multi-agents dans un environnement variable". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT099.
Texto completoThis thesis proposes optimization-based control solutions for the motion planning of multi-agent dynamical systems operating in a variable environment (with static/mobile obstacles and time-varying environmental disturbances).Collision-free paths are planned for the agents through the combined use of set theory (particularly, bounded convex sets), non(-linear) Model Predictive Control (MPC), Potential Field (PF) and graph-based methods. The contributions build on the proposal of repulsive potential field constructions together with on-off barrier functions which describe and, respectively, activate/deactivate the collision-free conditions introduced in a distributed NMPC framework. These constructions are further used for connectivity maintenance conditions among the group of agents while ensuring the tracking of the a priori generated path. Furthermore, a nonlinear disturbance observer is integrated within the control scheme for environmental disturbance rejection.Finally, the results are validated in simulation through comparisons with mixed-integer approaches and over a benchmark for the safe navigation of Unmanned Surface Vehicles (USVs) in the Trondheim fjord, Norway, using real numerical data
Körner, Stephan [Verfasser], Eike [Akademischer Betreuer] Stumpf y Ch [Akademischer Betreuer] Breitsamter. "Multi-Model Ensemble Wake Vortex Prediction / Stephan Körner ; Eike Stumpf, Ch. Breitsamter". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/116245122X/34.
Texto completoBen, Houria Zeineb. "Optimisation de la gestion du service de maintenance biomédicale". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES057/document.
Texto completoThe hospital is a world that is both sensitive and complex, sensitive because the human life is involved and complex because medical facilities are growing in number and in technical complexity. Then, the problem of the medical equipment maintenance in order to keep them in safe, reliable and with high level of availability has become a major preoccupation of the hospital. The objective of this thesis is to provide tools to help the biomedical maintenance service of the hospital to make decisions that allow a better control of costs, while ensuring patient and user safety and maintaining optimal performance of medical equipment. First, a heuristic has been proposed for the choice of internalization or outsourcing maintenance and for the selection of the appropriate contract. The selection of the contract is based on a set of criteria while considering the available budget constraint. Then, to improve the proposed procedure, we proposed multi-criteria decision-making tools to select the appropriate maintenance strategies. Seven criteria have been designed to study the criticality of medical equipment and the choice of maintenance by providing a coupling of the AHP approach "Analytical Hierarchy Process" with TOPSIS technique "Technique for Order Performance by Similarity to Ideal Solution." As the expert judgments of the maintenance department presented some uncertainty, we integrated the fuzzy language assessment of the criticality of the equipment and the selection of the maintenance strategy (Fuzzy AHP coupled with Fuzzy TOPSIS). A mixed integer linear programming model (MILP) was developed to define thresholds of criticality to characterize the three maintenance strategies. According to these thresholds, maintenance cost can be optimized within the available budget. Finally, a second mixed integer linear programming model (MILP) was developed based on the proposed heuristic. This model allows selecting for each equipment, the maintenance strategy, the internalization or the outsourcing of the maintenance and the type of contract while considering the available budget and the workload / capacity of the maintenance department
Elvidge, Sean. "On the use of multi-model ensemble techniques for ionospheric and thermospheric characterisation". Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5526/.
Texto completoIslam, Syed Ataharul. "Multi-model Ensemble Approach for the Assessment of Climate Change Impacts on Water Resources". Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/59630.
Texto completoMonteiro, Eric. "Contributions aux méthodes numériques pour traiter les non linéarités et les discontinuités dans les matériaux hétérogènes". Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00601050.
Texto completoFerrone, Alfonso. "Deterministic and probabilistic verification of multi-model meteorological forecasts on the subseasonal timescale". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11195/.
Texto completoLibros sobre el tema "Multi-Model ensembles"
Ryō, Mizuta, ed. Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean =: CMIP3 maruchi moderu ansanburu heikin o riyōshita shōrai no kaimen suion kaihyō bunpu no suitei. Tsukuba-shi: Kishō Kenkyūjo, 2008.
Buscar texto completoSanderson, Benjamin Mark. Uncertainty Quantification in Multi-Model Ensembles. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.707.
Texto completoMajumdar, Satya N. Random growth models. Editado por Gernot Akemann, Jinho Baik y Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.38.
Texto completoBurda, Zdzislaw y Jerzy Jurkiewicz. Phase transitions. Editado por Gernot Akemann, Jinho Baik y Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.14.
Texto completoCapítulos de libros sobre el tema "Multi-Model ensembles"
Kioutsioukis, Ioannis y Stefano Galmarini. "De praeceptis ferendis: Air Quality Multi-model Ensembles". En Springer Proceedings in Complexity, 553–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24478-5_89.
Texto completoSolazzo, Efisio y Stefano Galmarini. "Multi-model Ensembles: How Many Models Do We Need?" En Air Pollution Modeling and its Application XXIII, 505–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_83.
Texto completoGalmarini, Stefano y Slowomir Potempski. "Multi-model Ensembles: Metrics, Indexes, Data Assimilation and All That Jazz". En Air Pollution Modeling and its Application XXI, 419–26. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1359-8_71.
Texto completoHemri, Stephan. "Multi-model Combination and Seamless Prediction". En Handbook of Hydrometeorological Ensemble Forecasting, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40457-3_19-1.
Texto completoHemri, Stephan. "Multi-model Combination and Seamless Prediction". En Handbook of Hydrometeorological Ensemble Forecasting, 285–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-642-39925-1_19.
Texto completoDong, Wenjie, Jianbin Huang, Yan Guo y Fumin Ren. "Comparisons Among Multi-model Ensemble Based on Different Ensemble Methods and Ensemble Member Sizes". En Springer Atmospheric Sciences, 157–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48444-9_3.
Texto completoKaraket, Nattapat, Sansanee Auephanwiriyakul y Nipon Theera-Umpon. "Automobile Parts Localization Using Multi-layer Multi-model Images Classifier Ensemble". En Advances in Intelligent Information Hiding and Multimedia Signal Processing, 367–76. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6757-9_46.
Texto completoMohan Das, Dwarika, R. Singh, A. Kumar, D. R. Mailapalli, A. Mishra y C. Chatterjee. "A Multi-Model Ensemble Approach for Stream Flow Simulation". En Modeling Methods and Practices in Soil and Water Engineering, 71–102. Oakville, ON ; Waretown, NJ : Apple Academic Press, [2016] |: Apple Academic Press, 2017. http://dx.doi.org/10.1201/b19987-5.
Texto completoChen, Ying, Tiankui Zhang, Rong Huang, Yutao Zhu y Junhua Hong. "Multi-Model Ensemble-Based Fault Prediction of Telecommunication Networks". En Lecture Notes in Electrical Engineering, 678–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_91.
Texto completoSurlikar, Rajas, Akshay Pachore y Renji Remesan. "Bayesian Model Averaging for Multi-model Ensemble Streamflows of the Godavari Basin". En Water Science and Technology Library, 409–27. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-76532-2_17.
Texto completoActas de conferencias sobre el tema "Multi-Model ensembles"
Ponzina, Flavio, Rishikanth Chandrasekaran, Anya Wang, Seiji Minowada, Siddharth Sharma y Tajana Rosing. "Multi-Model Inference Composition of Hyperdimensional Computing Ensembles". En 2024 IEEE 42nd International Conference on Computer Design (ICCD), 691–98. IEEE, 2024. https://doi.org/10.1109/iccd63220.2024.00111.
Texto completoYu, Jun, Jichao Zhu, Wangyuan Zhu, Zhongpeng Cai, Gongpeng Zhao, Zhihong Wei, Guochen Xie, Zerui Zhang, Qingsong Liu y Jiaen Liang. "Multi Model Ensemble for Compound Expression Recognition". En 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 4873–79. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00491.
Texto completoTian, Chenyu, Rui Lin y Liang Zhao. "Rod Pumping System Fault Diagnosis Based on Multi-Model Ensemble Method". En 2024 International Conference on Networking, Sensing and Control (ICNSC), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icnsc62968.2024.10760207.
Texto completoXu, Jiayi, Zhijin Qiu, Chen Fan, Bo Wang, Guoqing Song y Wenkai Ren. "Multi-Model Ensemble Diagnostic Method for Evaporation Duct Considering Physical Property". En 2024 14th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1–4. IEEE, 2024. https://doi.org/10.1109/isape62431.2024.10841036.
Texto completoPatil, Saraswati, Shubhan Punde, Prince Sahani y Abhinav Salve. "Multi-Model Ensemble Approach for Enhanced Cyberbullying Detection Across Diverse Categories". En 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 195–202. IEEE, 2024. https://doi.org/10.1109/icicnis64247.2024.10823191.
Texto completoSilva, Anderson, Patrick Valduriez y Fabio Porto. "Integrating Machine Learning Model Ensembles to the SAVIME Database System". En Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sbbd_estendido.2022.21870.
Texto completoZhang, Rui, Jiming Guo, Hongbo Jiang, Peng Xie y Chen Wang. "Multi-Task Learning for Location Prediction with Deep Multi-Model Ensembles". En 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2019. http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00155.
Texto completoOrtt, Derek, Chris Hebert, Bob Weinzapfel y Devin Eyre. "Development of a Probabilistic Tropical Cyclone Track Uncertainty Cone Using Multi-Model Ensembles". En Offshore Technology Conference. Offshore Technology Conference, 2017. http://dx.doi.org/10.4043/27931-ms.
Texto completoAllen, Marshall, Raymundo Arroyave y Richard Malak. "Deep Ensembles for Modeling Uncertain Phase Constraints In Compositionally Graded Alloy Design". En ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89091.
Texto completoGeorgiou, Ioannis T. "Pattern Characterization in Acceleration Vector Fields Developed in Complex Beam Structures Subject to an Excitation Protocol by Impulsive Forces". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70504.
Texto completoInformes sobre el tema "Multi-Model ensembles"
Hansen, James A. Interpreting, Improving, and Augmenting Multi-Model Ensembles. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2006. http://dx.doi.org/10.21236/ada444387.
Texto completoRay, Jaideep, Katherine Regina Cauthen, Sophia Lefantzi y Lynne Burks. Conditioning multi-model ensembles for disease forecasting. Office of Scientific and Technical Information (OSTI), enero de 2019. http://dx.doi.org/10.2172/1492995.
Texto completoHansen, James A. Interpreting, Improving, and Augmenting Multi-Model Ensembles. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2002. http://dx.doi.org/10.21236/ada629175.
Texto completoPedersen, Gjertrud. Symphonies Reframed. Norges Musikkhøgskole, agosto de 2018. http://dx.doi.org/10.22501/nmh-ar.481294.
Texto completoBarhak, Jacob. Supplemental Information: The Reference Model is a Multi-Scale Ensemble Model of COVID-19. Outbreak, mayo de 2021. http://dx.doi.org/10.34235/b7eaa32b-1a6b-444f-9848-76f83f5a733c.
Texto completoIde, Kayo. Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada542670.
Texto completoIde, Kayo. Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada601440.
Texto completoTribbia, Joseph. NCAR Contribution to A U.S. National Multi-Model Ensemble (NMME) ISI Prediction System. Office of Scientific and Technical Information (OSTI), noviembre de 2015. http://dx.doi.org/10.2172/1226920.
Texto completoHinrichs, Claudia y Judith Hauck. Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. OceanNets, junio de 2022. http://dx.doi.org/10.3289/oceannets_d4.4.
Texto completo