Literatura académica sobre el tema "Multi-Branch generative models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multi-Branch generative models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multi-Branch generative models"
Xiong, Zuobin, Wei Li y Zhipeng Cai. "Federated Generative Model on Multi-Source Heterogeneous Data in IoT". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junio de 2023): 10537–45. http://dx.doi.org/10.1609/aaai.v37i9.26252.
Texto completoSafarov, Furkat, Ugiloy Khojamuratova, Misirov Komoliddin, Furkat Bolikulov, Shakhnoza Muksimova y Young-Im Cho. "MBGPIN: Multi-Branch Generative Prior Integration Network for Super-Resolution Satellite Imagery". Remote Sensing 17, n.º 5 (25 de febrero de 2025): 805. https://doi.org/10.3390/rs17050805.
Texto completoNiu, Zhenye, Yuxia Li, Yushu Gong, Bowei Zhang, Yuan He, Jinglin Zhang, Mengyu Tian y Lei He. "Multi-Class Guided GAN for Remote-Sensing Image Synthesis Based on Semantic Labels". Remote Sensing 17, n.º 2 (20 de enero de 2025): 344. https://doi.org/10.3390/rs17020344.
Texto completoMeng, Xiang Bao, Lei Wang y Zi Jian Pan. "Parametric Modeling of Transition Tube with Constant Section Area along Straight, Circular and Oblique Central Route on CATIA". Advanced Materials Research 619 (diciembre de 2012): 18–21. http://dx.doi.org/10.4028/www.scientific.net/amr.619.18.
Texto completoShen, Qiwei, Junjie Xu, Jiahao Mei, Xingjiao Wu y Daoguo Dong. "EmoStyle: Emotion-Aware Semantic Image Manipulation with Audio Guidance". Applied Sciences 14, n.º 8 (10 de abril de 2024): 3193. http://dx.doi.org/10.3390/app14083193.
Texto completoGuo, Xiaoqiang, Xinhua Liu, Grzegorz Królczyk, Maciej Sulowicz, Adam Glowacz, Paolo Gardoni y Zhixiong Li. "Damage Detection for Conveyor Belt Surface Based on Conditional Cycle Generative Adversarial Network". Sensors 22, n.º 9 (3 de mayo de 2022): 3485. http://dx.doi.org/10.3390/s22093485.
Texto completoWang, Jiawei y Zhen Chen. "Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks". PLOS ONE 19, n.º 6 (25 de junio de 2024): e0306094. http://dx.doi.org/10.1371/journal.pone.0306094.
Texto completoAo, Zhuoyu, Weixi Wang, Yaoyu Li, Hongsheng Huang, Xiaoming Li, Renzhong Guo y Shengjun Tang. "Structured Generation Method of 3D Synthetic Tree Models for Precision Assessment". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-1-2024 (10 de mayo de 2024): 7–12. http://dx.doi.org/10.5194/isprs-archives-xlviii-1-2024-7-2024.
Texto completoMednikov, Aleksandr, Alexey Maksimov y Elina Tyurina. "Mathematical modeling of mini-CHP based on biomass". E3S Web of Conferences 69 (2018): 02005. http://dx.doi.org/10.1051/e3sconf/20186902005.
Texto completoRebuffel, Clement, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella Cancelliere y Patrick Gallinari. "Controlling hallucinations at word level in data-to-text generation". Data Mining and Knowledge Discovery 36, n.º 1 (22 de octubre de 2021): 318–54. http://dx.doi.org/10.1007/s10618-021-00801-4.
Texto completoTesis sobre el tema "Multi-Branch generative models"
Pinton, Noel Jeffrey. "Reconstruction synergique TEP/TDM à l'aide de l'apprentissage profond". Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0123.
Texto completoThe widespread adoption of hybrid Positron emission tomography (PET)/Computed tomography (CT) scanners has led to a significant increase in the availability of combined PET/CT imaging data. However, current methodologies often process each modality independently, overlooking the potential to enhance image quality by leveraging the complementary anatomical and functional information intrinsic to each modality. Exploiting intermodal information has the potential to improve both PET and CT reconstructions by providing a synergistic view of anatomical and functional details. This thesis introduces a novel approach for synergistic reconstruction of medical images using multi-branch generative models. By employing variational autoencoders (VAEs) with a multi-branch architecture, our model simultaneously learns from paired PET and CT images,allowing for effective joint denoising and highfidelity reconstruction of both modalities. Beyond improving image quality, this framework also paves the way for future advancements in multi-modal medical imaging, highlighting the transformative potential of integrated approaches for hybrid imaging modalities in clinical and research settings
Capítulos de libros sobre el tema "Multi-Branch generative models"
He, Xiaoxu y Mingyu Sun. "Biomimetic Form-Finding Study of Bone Needle Microstructure Based on Sponge Regeneration Behavior". En Computational Design and Robotic Fabrication, 90–101. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8405-3_8.
Texto completoActas de conferencias sobre el tema "Multi-Branch generative models"
Ling, Zeyu, Bo Han, Yongkang Wong, Han Lin, Mohan Kankanhalli y Weidong Geng. "MCM: Multi-condition Motion Synthesis Framework". En Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/120.
Texto completoLi, Yu-Lei. "Unsupervised Embedding and Association Network for Multi-Object Tracking". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/157.
Texto completoUrata, Kazuya, Ryo Tsumoto, Kentaro Yaji y Kikuo Fujita. "Multi-Stage Optimal Design for Turbulent Pipe Systems by Data-Driven Morphological Exploration and Evolutionary Shape Optimization". En ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-143383.
Texto completoGijrath, Hans y Mats A˚bom. "A Matrix Formalism for Fluid-Borne Sound in Pipe Systems". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33356.
Texto completoGuo, Hang, Tao Dai, Guanghao Meng y Shu-Tao Xia. "Towards Robust Scene Text Image Super-resolution via Explicit Location Enhancement". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/87.
Texto completoWu, Tong, Bicheng Dai, Shuxin Chen, Yanyun Qu y Yuan Xie. "Meta Segmentation Network for Ultra-Resolution Medical Images". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/76.
Texto completoErol, Anil, Saad Ahmed, Paris von Lockette y Zoubeida Ounaies. "Analysis of Microstructure-Based Network Models for the Nonlinear Electrostriction Modeling of Electro-Active Polymers". En ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3979.
Texto completo