Literatura académica sobre el tema "Mucin domain 1 (TIM-1)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mucin domain 1 (TIM-1)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mucin domain 1 (TIM-1)"
Phong, Binh y Lawrence P. Kane. "Mast cell activation is enhanced by Tim1:Tim4 interaction but not by Tim-1 antibodies". F1000Research 5 (1 de marzo de 2016): 251. http://dx.doi.org/10.12688/f1000research.8132.1.
Texto completoPhong, Binh y Lawrence P. Kane. "Mast cell activation is enhanced by Tim1:Tim4 interaction but not by Tim-1 antibodies". F1000Research 5 (8 de julio de 2016): 251. http://dx.doi.org/10.12688/f1000research.8132.2.
Texto completoDouna, Hidde, Virginia Smit, Gijs H. M. van Puijvelde, Mate G. Kiss, Christoph J. Binder, llze Bot, Vijay K. Kuchroo, Andrew H. Lichtman, Johan Kuiper y Amanda C. Foks. "Tim-1 mucin domain-mutant mice display exacerbated atherosclerosis". Atherosclerosis 352 (julio de 2022): 1–9. http://dx.doi.org/10.1016/j.atherosclerosis.2022.05.017.
Texto completoDouna, H., V. Smit, G. Puijvelde van, C. Binder, I. Bot, V. Kuchroo, A. Lichtman, J. Kuiper y A. Foks. "Tim-1 Mucin Domain-Mutant Mice Display Exacerbated Atherosclerosis". Atherosclerosis 287 (agosto de 2019): e25-e26. http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.074.
Texto completoDu, Peng, Ruihua Xiong, Xiaodong Li y Jingting Jiang. "Immune Regulation and Antitumor Effect of TIM-1". Journal of Immunology Research 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/8605134.
Texto completoJones, Jennifer, Andrew Brandmaier, Sarah Umetsu, Xia Bu, Dale Umetsu, Rosemarie DeKruyff y Gordon Freeman. "Evolutionary origins and structural analysis of phosphatidylserine binding by the TIM gene family (CAM5P.244)". Journal of Immunology 192, n.º 1_Supplement (1 de mayo de 2014): 180.15. http://dx.doi.org/10.4049/jimmunol.192.supp.180.15.
Texto completoCurtiss, Miranda L., Bruce S. Hostager, Elizabeth Stepniak, Melody Singh, Natalie Manhica, Judit Knisz, Geri Traver, Paul D. Rennert, John D. Colgan y Paul B. Rothman. "Fyn binds to and phosphorylates T cell immunoglobulin and mucin domain-1 (Tim-1)". Molecular Immunology 48, n.º 12-13 (julio de 2011): 1424–31. http://dx.doi.org/10.1016/j.molimm.2011.03.023.
Texto completoSong, Lu, Jiangming Sun, Martin Söderholm, Olle Melander, Marju Orho-Melander, Jan Nilsson, Yan Borné y Gunnar Engström. "Association of TIM-1 (T-Cell Immunoglobulin and Mucin Domain 1) With Incidence of Stroke". Arteriosclerosis, Thrombosis, and Vascular Biology 40, n.º 7 (julio de 2020): 1777–86. http://dx.doi.org/10.1161/atvbaha.120.314269.
Texto completoKirui, Jared, Yara Abidine, Annasara Lenman, Koushikul Islam, Yong-Dae Gwon, Lisa Lasswitz, Magnus Evander, Marta Bally y Gisa Gerold. "The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry". Cells 10, n.º 7 (20 de julio de 2021): 1828. http://dx.doi.org/10.3390/cells10071828.
Texto completoPhong, Binh y Lawrence Kane. "Modulation of mast cell function by TIM-1 signaling (177.4)". Journal of Immunology 188, n.º 1_Supplement (1 de mayo de 2012): 177.4. http://dx.doi.org/10.4049/jimmunol.188.supp.177.4.
Texto completoTesis sobre el tema "Mucin domain 1 (TIM-1)"
Rhein, Bethany Ann. "Ebola virus: entry, pathogenesis and identification of host antiviral activities". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/6629.
Texto completoDONNARUMMA, Tiziano. "Tim-1 is a physiological P-selectin ligand that mediates T cell trafficking during inflammation". Doctoral thesis, 2014. http://hdl.handle.net/11562/712964.
Texto completoLeucocyte trafficking is an important mechanism of immune surveillance that enables immune cells to migrate to and from peripheral tissues, providing primary and secondary immune responses as requested. The interaction between leukocytes and the inflamed endothelium are mediated by selectins, integrins, and immunoglobulin (Ig) gene super family proteins. Moreover, other important glycoproteins involved in this process are the mucins, which serve as glycoprotein ligands for selectins. Selectins play a central role in leukocyte trafficking by mediating the first phases of tethering and rolling on vascular surfaces. Tims proteins are a class of mucin able to bind a diverse set of ligands. The structure of Tim proteins, in particular the one of Tim-1 is similar to those of the mucin mucosal addressin cell adhesion molecule (MadCAM)-1, a classical adhesion receptor involved in leukocyte trafficking in the immune system able to bind both selectins and integrins. The mucin domain of Tims protein exhibit several sites of O- and N- glycosilation similar to those observed on P-selectin glycoprotein ligand (PSGL)-1; the most charachterized ligand of selectins. Moreover, it has been shown that the IgV domain of Tim-1, exhibits characteristics of the C-type lectins, as its non-species-specific binding to carbohydrate moieties of several cell types is calcium sensitive and is reduced in cells with defective O- and N-linked carbohydrate synthesis. All these structural observations led us to investigate a potential role for Tim-1 in leukocyte trafficking in inflamed tissues as highly glycosilated molecules like C-type lectins, mucins, integrins and Ig-superfamily members are involved in this process. For this reasons we initially tested the ability of Tim-1 to bind selectin, that are known to interact with highly glycosilated mucin like Tim-1. Here we report that T cell immunoglobulin and mucin domain 1 (TIM-1) is a novel P-selectin ligand. We first reported the ability of both human and murine Tim-1 to bind P-selectin in vitro and under shear stress conditions in a cell free system. We then demonstrated the importance of TIM-1 in mediating tethering and rolling of Th1 and Th17 cells on P-selectin in underflow rolling assays. Cells lacking the mucin domain of Tim-1 displayed a strong reduced ability to interact with P-selectin underflow in vitro. To evaluate the importance of Tim-1 –P-selectin binding in vivo we performed intravital microscopy in thrombin-activated mesenteric venules displaying that Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling ability in vivo in a P-selectin dependent model of inlammation. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. To evaluate a potential physiologic role for Tim-1/P-selectin interaction in mediating leukocyte trafficking in vivo during inflammatory responses, we demonstrated that inhibition of TIM-1 reduced T cell recruitment in a contact hypersensivity model (CHS) of inlammation. We then demonstrated the importance of Tim-1 in mediating T cell recruitment in the inflamed brain microcirculation adopting intravital microscopy in brain pial venules. Also in this model we have shown that the lacking of Tim-1 mucin domain resulted in a strong reduced ability of Th1 and Th17 cells to interact with the inflamed endothelium. Finally as brain pial venules are a key entry point for T cells in the early phases of development of EAE (experimental autoimmune encephalomyelitis) we checked the involvement of Tim-1 in this model. We discovered that lack of Tim-1 mucin domain resulted in a less severe development of the pathology correlating with a lower T cell accumulation in the CNS. Collectively our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.
Capítulos de libros sobre el tema "Mucin domain 1 (TIM-1)"
Bell, Sherilyn L. y Janet F. Forstner. "Mucin Domains to Explore Disulfide-Dependent Dimer Formation". En Glycoprotein Methods and Protocols, 143–55. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1385/1-59259-048-9:143.
Texto completoCarvalho, Fabiana Rabe, Débora Familiar-Macedo y Andrea Alice Silva. "Mitochondrial DNA Role in Zika Virus Infection". En Mitochondrial DNA and the Immuno-inflammatory Response: New Frontiers to Control Specific Microbial Diseases, 86–100. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815051698122030009.
Texto completoActas de conferencias sobre el tema "Mucin domain 1 (TIM-1)"
Vega-Carrascal, Isabel, Emer P. Reeves, Shane J. O'Neill y Noel G. McElvaney. "Expression Of T-cell Immunoglobulin And Mucin-domain-containing Molecule-1 (TIM-1) And TIM-3 Is Upregulated In Human Bronchial Epithelial Cells In Cystic Fibrosis". En American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1412.
Texto completoWarzoha, Ronald J., Andrew N. Smith y Maurice Harris. "Improving the Resolution of Steady-State, Infrared-Based Thermal Interface Resistance Measurements Using High-Precision Metrology to Determine In-Situ TIM Thickness". En ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7043.
Texto completoInformes sobre el tema "Mucin domain 1 (TIM-1)"
McClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon y R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, octubre de 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Texto completo