Literatura académica sobre el tema "Mouse Brain Organoids"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mouse Brain Organoids".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Mouse Brain Organoids":

1

Roosen, Mieke, Chris Meulenbroeks, Phylicia Stathi, Joris Maas, Julie Morscio, Jens Bunt y Marcel Kool. "BIOL-11. PRECLINICAL MODELLING OF PEDIATRIC BRAIN TUMORS USING ORGANOID TECHNOLOGY". Neuro-Oncology 25, Supplement_1 (1 de junio de 2023): i8. http://dx.doi.org/10.1093/neuonc/noad073.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Molecular characterization has resulted in improved classification of pediatric brain tumors, leading to many novel (sub)types with distinct oncodriving events. To study tumor biology and to perform translational research on each of these tumors, preclinical models are essential. However, we are currently lacking sufficient models, especially in vitro, to represent each (sub)type and their heterogeneity. To generate large series of preclinical in vitro models for pediatric brain tumors, we are using organoid technology. Cells from patient samples and patient-derived xenograft samples have been taken into culture to establish 3D organoids using tumor type specific culture conditions. These organoid lines retain the molecular characteristics of the original tumor tissue. They can be used to perform high-throughput drug screens, genetic manipulations, and co-cultures with, for instance, immune cells. Viable tissue is not always available for all tumor (sub)types and specific oncodrivers. To circumvent this lack of tissue, we can also induce tumors in vitro. Therefore, we generate cerebral and cerebellar brain organoids from human pluripotent stem cells. These organoids mimic human developing brain cells and can be genetically manipulated to model different brain tumor types. These genetically engineered brain tumor models allow us to study the cellular origins of pediatric brain tumors and the different tumor driving mechanisms. Tumors induced in the brain organoids histologically and molecularly resemble human patient samples based on (single cell) transcriptomic analyses. Moreover, the tumor cells are able to establish xenografts in mouse brains. In summary, organoid technology provides a novel avenue to establish in vitro models for pediatric brain tumors. At the meeting we will present data for various new ependymoma, medulloblastoma and embryonal brain tumor organoid models.
2

Simsa, Robin, Theresa Rothenbücher, Hakan Gürbüz, Nidal Ghosheh, Jenny Emneus, Lachmi Jenndahl, David L. Kaplan, Niklas Bergh, Alberto Martinez Serrano y Per Fogelstrand. "Brain organoid formation on decellularized porcine brain ECM hydrogels". PLOS ONE 16, n.º 1 (28 de enero de 2021): e0245685. http://dx.doi.org/10.1371/journal.pone.0245685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.
3

Sukhinich, K. K., K. M. Shakirova, E. B. Dashinimaev y M. A. Aleksandrova. "Development of 3D Cerebral Aggregates in the Brain Ventricles of Adult Mice". Russian Journal of Developmental Biology 52, n.º 3 (mayo de 2021): 164–75. http://dx.doi.org/10.1134/s1062360421030061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract The cerebral organoids are three-dimensional cell cultures formed from brain-specific cell types arising from embryonic or pluripotent stem cells. Organoids provide an opportunity to study the early stages of brain development and diseases of the central nervous system. However, the modeling of organoids is associated with a number of unsolved problems. Organoid production techniques involve a complex cell culture process that requires special media, growth factors, and often the use of a bioreactor. Even under standardized conditions, structures of different morphology are formed: from disorganized cell aggregates to structured minibrains, which are selected for study. For natural reasons, organoids grown in vitro do not have a blood supply, which limits their development. We tried to obtain cerebral aggregates similar to organoids in an in vivo model, where vascular growth and tissue blood supply are provided, for which we transplanted a cell suspension from the mouse embryonic neocortex into the lateral ventricles of the brain of adult mice. Therefore, the medium for cultivation was the cerebrospinal fluid, and the lateral ventricles of the brain, where it circulates, served as a bioreactor. The results showed that the neocortex from E14.5 is a suitable source of stem/progenitor cells that self-assemble into three-dimensional aggregates and vascularized in vivo. The aggregates consisted of a central layer of mature neurons, the marginal zone free of cells and a glia limitans, which resembled cerebral organoids. Thus, the lateral ventricles of the adult mouse brain can be used to obtain vascularized cell aggregates resembling cerebral organoids.
4

Bao, Zhongyuan, Kaiheng Fang, Zong Miao, Chong Li, Chaojuan Yang, Qiang Yu, Chen Zhang, Zengli Miao, Yan Liu y Jing Ji. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice". Oxidative Medicine and Cellular Longevity 2021 (22 de noviembre de 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Traumatic brain injury (TBI) causes a high rate of mortality and disability, and its treatment is still limited. Loss of neurons in damaged area is hardly rescued by relative molecular therapies. Based on its disease characteristics, we transplanted human embryonic stem cell- (hESC-) derived cerebral organoids in the brain lesions of controlled cortical impact- (CCI-) modeled severe combined immunodeficient (SCID) mice. Grafted organoids survived and differentiated in CCI-induced lesion pools in mouse cortical tissue. Implanted cerebral organoids differentiated into various types of neuronal cells, extended long projections, and showed spontaneous action, as indicated by electromyographic activity in the grafts. Induced vascularization and reduced glial scar were also found after organoid implantation, suggesting grafting could improve local situation and promote neural repair. More importantly, the CCI mice’s spatial learning and memory improved after organoid grafting. These findings suggest that cerebral organoid implanted in lesion sites differentiates into cortical neurons, forms long projections, and reverses deficits in spatial learning and memory, a potential therapeutic avenue for TBI.
5

Ferdaos, Nurfarhana, Sally Lowell y John O. Mason. "Pax6 mutant cerebral organoids partially recapitulate phenotypes of Pax6 mutant mouse strains". PLOS ONE 17, n.º 11 (28 de noviembre de 2022): e0278147. http://dx.doi.org/10.1371/journal.pone.0278147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Cerebral organoids show great promise as tools to unravel the complex mechanisms by which the mammalian brain develops during embryogenesis. We generated mouse cerebral organoids harbouring constitutive or conditional mutations in Pax6, which encodes a transcription factor with multiple important roles in brain development. By comparing the phenotypes of mutant organoids with the well-described phenotypes of Pax6 mutant mouse embryos, we evaluated the extent to which cerebral organoids reproduce phenotypes previously described in vivo. Organoids lacking Pax6 showed multiple phenotypes associated with its activity in mice, including precocious neural differentiation, altered cell cycle and an increase in abventricular mitoses. Neural progenitors in both Pax6 mutant and wild type control organoids cycled more slowly than their in vivo counterparts, but nonetheless we were able to identify clear changes to cell cycle attributable to the absence of Pax6. Our findings support the value of cerebral organoids as tools to explore mechanisms of brain development, complementing the use of mouse models.
6

García-Delgado, Ana Belén, Rafael Campos-Cuerva, Cristina Rosell-Valle, María Martin-López, Carlos Casado, Daniela Ferrari, Javier Márquez-Rivas, Rosario Sánchez-Pernaute y Beatriz Fernández-Muñoz. "Brain Organoids to Evaluate Cellular Therapies". Animals 12, n.º 22 (15 de noviembre de 2022): 3150. http://dx.doi.org/10.3390/ani12223150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.
7

Yakoub, Abraam M. y Mark Sadek. "Analysis of Synapses in Cerebral Organoids". Cell Transplantation 28, n.º 9-10 (4 de junio de 2019): 1173–82. http://dx.doi.org/10.1177/0963689718822811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Cerebral organoids are an emerging cutting-edge technology to model human brain development and neurodevelopmental disorders, for which mouse models exhibit significant limitations. In the human brain, synaptic connections define neural circuits, and synaptic deficits account for various neurodevelopmental disorders. Thus, harnessing the full power of cerebral organoids for human brain modeling requires the ability to visualize and analyze synapses in cerebral organoids. Previously, we devised an optimized method to generate human cerebral organoids, and showed that optimal organoids express mature-neuron markers, including synaptic proteins and neurotransmitter receptors and transporters. Here, we give evidence for synaptogenesis in cerebral organoids, via microscopical visualization of synapses. We also describe multiple approaches to quantitatively analyze synapses in cerebral organoids. Collectively, our work provides sufficient evidence for the possibility of modeling synaptogenesis and synaptic disorders in cerebral organoids, and may help advance the use of cerebral organoids in molecular neuroscience and studies of neurodevelopmental disorders such as autism.
8

Estridge, R. Chris, Jennifer E. O’Neill y Albert J. Keung. "Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development". Organoids 2, n.º 4 (5 de octubre de 2023): 165–76. http://dx.doi.org/10.3390/organoids2040013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Human cerebral organoids are readily generated from human embryonic stem cells and human induced pluripotent stem cells and are useful in studying human neurodevelopment. Recent work with human cerebral organoids have explored the creation of different brain regions and the impacts of soluble and mechanical cues. Matrigel is a gelatinous, heterogenous mixture of extracellular matrix proteins, morphogens, and growth factors secreted by Engelbreth-Holm-Swarm mouse sarcoma cells. It is a core component of almost all cerebral organoid protocols, generally supporting neuroepithelial budding and tissue polarization; yet, its roles and effects beyond its general requirement in organoid protocols are not well understood, and its mode of delivery is variable, including the embedding of organoids within it or its delivery in soluble form. Given its widespread usage, we asked how H9 stem cell-derived hCO development and composition are affected by Matrigel dosage and delivery method. We found Matrigel exposure influences organoid size, morphology, and cell type composition. We also showed that greater amounts of Matrigel promote an increase in the number of choroid plexus (ChP) cells, and this increase is regulated by the BMP4 pathway. These results illuminate the effects of Matrigel on human cerebral organoid development and the importance of delivery mode and amount on organoid phenotype and composition.
9

Antonica, Francesco, Lucia Santomaso, Davide Pernici, Linda Petrucci, Giuseppe Aiello, Alessandro Cutarelli, Luciano Conti et al. "MODL-22. Establishment of a novel system to specifically trace and ablate quiescent/slow cycling cells in high-grade glioma". Neuro-Oncology 24, Supplement_1 (1 de junio de 2022): i173. http://dx.doi.org/10.1093/neuonc/noac079.645.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Pediatric and adult high-grade gliomas are the most common malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after surgical removal and chemotherapy. Quiescent/slow cycling stem cells have been proposed to be one of the main players of tumor relapse but their involvement in in the infiltration remain unclear. Despite they have been described in mouse models or after transcriptional profiling of human tumor samples, their direct visualization, targeting and ablation remains a challenge. Here, we identified a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients. We next used a fluorescent cell cycle sensor to visualize quiescence tumor cells in mouse brain cancer and human cancer organoids. In particular, we characterized them within the tumor revealing the invasiveness capacity of slow cycling tumor cells. Furthermore, we generated a new system to specifically trace and ablate such cells. Indeed, lineage tracing experiments allowed to trace quiescent Prom1 progeny in the tumors after temozolomide treatment. In addition, the selective ablation of quiescent Prom1+ cells in mouse brain cancer reduced tumor infiltration and improved survival. Furthermore, time-lapse experiments showed that slow cycling cells are also able to infiltrate co-cultured human brain cancer organoids. Finally, using our new cancer organoid- and GBM spheroids-based models we identified a drug acting on quiescent cells leading to a reduction in cell invasion. Overall, our data show that quiescence/slow cycling cells are key driver of tumor invasiveness, the major malignant feature of high-grade brain cancer.
10

Antonica, F., L. Santomaso, G. Aiello, D. Pernici, E. Miele y L. Tiberi. "OS13.3.A Establishment of a novel system to specifically trace and ablate quiescent/slow cycling cells in high-grade glioma". Neuro-Oncology 23, Supplement_2 (1 de septiembre de 2021): ii16. http://dx.doi.org/10.1093/neuonc/noab180.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract BACKGROUND High-grade gliomas are the most common malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after surgical removal and chemotherapy. Quiescent/slow cycling stem cells have been proposed to be one of the main players of tumor relapse but their involvement in in the infiltration remain unclear. Despite they have been described in mouse models or after transcriptional profiling of human tumor samples, their direct visualization, targeting and ablation remains a challenge. MATERIAL AND METHODS Tumors were induced over-expressing oncogenic forms of MET and p53 in the subventricular zone (SVZ) of P2 mouse brain as well as human forebrain organoids. The co-expression with specific cell cycle sensors as well as lineage specific CreERT2 under control of stem cells promoters allowed to visualize and target glioma stem cells. RESULTS Here, we used a fluorescent cell cycle sensor to visualize quiescent tumor cells in mouse brain cancer and human cancer organoids. In particular, we characterized them within the tumor revealing the invasiveness capacity of slow cycling tumor cells. Furthermore, we generated a new system to specifically trace and ablate such cells. Indeed, lineage tracing experiments allowed to trace quiescent Prom1 progeny in the tumors after temozolomide treatment. In addition, the selective ablation of qProm1 in mouse brain cancer reduced tumor infiltration. Finally, time-lapse experiments showed that slow cycling cells are also able to infiltrate co-cultured human brain cancer organoids. CONCLUSION Overall, our data show that quiescent/slow cycling cells are key driver of tumor invasiveness, the major malignant feature of high-grade brain cancer.

Tesis sobre el tema "Mouse Brain Organoids":

1

Koshy, Aysis. "Characterization of Neural Development : Linking Retinoic Acid Receptors to Cell Fate and Modelling Tumorigenesis in Brain Organoids". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Le développement du système nerveux central dans l'embryon dépend d'une signalisation opportune et précise des molécules. L'acide rétinoïque est l'une de ces molécules bien caractérisées par son impact sur le développement du cerveau et des yeux. Sous sa forme métaboliquement active, l'ATRA (acide All Trans Retinoïque) se lie aux récepteurs de l'acide rétinoïque (RAR) et contrôle l'expression d'une panoplie de gènes participant à des évènements impliqués dans la maturation cellulaire ainsi qu'à l'apoptose. Le RAR existe sous trois isotypes - RARα, RARβ et RARγ. Au cours du développement embryonnaire, chaque isotype est présent à des endroits spatialement distincts, influençant la structuration et la maturation. L'état actuel de la recherche est limité à la corrélation entre un isotype RAR spécifique et un destin cellulaire particulier. Dans cette thèse, nous discutons des résultats qui indiquent la capacité de RARβ et RARγ à restaurer de manière synergique la spécialisation cellulaire en détournant les programmes génétiques contrôlés par RARα. Dans une approche RNAseq unicellulaire, nous sommes en mesure de visualiser plusieurs clusters uniques à l'activation de RARβ + RARγ au cours de la différenciation des cellules souches allant au délà de précurseurs neuronaux.Dans le même ordre d'idées, l'étude du développement du tissu nerveux dans le contexte de maladies est pertinente pour comprendre les caractéristiques de la maladie et identifier les options thérapeutiques ciblées. Dans cet esprit, nous avons souhaité développer un modèle organoïde cérébral de souris (BORG) à partir de cellules ES de souris mutantes H3.3K27M et H3.3G34R en tant que modèle de recherche in vitro rentable et reproductible. Ici, nous montrons la preuve d'un BORG de souris tumorigène comme celui-ci qui héberge une signature knock-out TP53
The development of the Central Nervous system in the embryo depends on timely and precise signaling of molecules. Retinoic acid is one such molecule well characterized for its impact in brain and eye development. In its metabolically active form, ATRA (All Trans Retinoic acid) binds Retinoic acid receptors (RAR), and controls downstream gene expression attributed to cell maturation and apoptosis. The RAR exists as three isotypes - RARα, RARβ, & RARγ. During embryological development, each isotype is present in spatially distinct locations influencing patterning and maturation. The current state of research is limited to the correlation of a specific RAR isotype to a particular cell fate. In this thesis, we discuss findings that point to the ability of RARβ & RARγ to synergistically restore cell specialization by hijacking RARα-controlled gene programs. In a single-cell RNAseq approach, we are able to visualize several clusters unique to RARβ + RARγ activation during mouse stem cell differentiation beyond neuronal precursor stages. In a similar vein, studying nervous tissue development in the context of diseases is relevant to understanding disease characteristics and identifying targeted therapy options. With this in mind, we wanted to develop a mouse brain organoid (BORG) model from H3.3K27M and H3.3G34R mutant mouse ES cells as an invitro research model that is cost effective and reproducible. Here, we show proof of a tumorigenic like mouse BORG that harbors a TP53 knockout signature

Pasar a la bibliografía