Literatura académica sobre el tema "Monte-Charge"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Monte-Charge".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Monte-Charge"
Wang, Xidi y George A. Baker. "Monte carlo calculations of the conformal charge". Journal of Statistical Physics 69, n.º 5-6 (diciembre de 1992): 1069–95. http://dx.doi.org/10.1007/bf01058762.
Texto completoYu, Unjong, Hoseung Jang y Chi-Ok Hwang. "A diffusion Monte Carlo method for charge density on a conducting surface at non-constant potentials". Monte Carlo Methods and Applications 27, n.º 4 (28 de octubre de 2021): 315–24. http://dx.doi.org/10.1515/mcma-2021-2098.
Texto completoBudrin, K. S., Yu D. Panov, A. S. Moskvin y A. A. Chikov. "Unconventional phase separation in the model 2D spin-pseudospin system". EPJ Web of Conferences 185 (2018): 11006. http://dx.doi.org/10.1051/epjconf/201818511006.
Texto completoKim, J. S., C. Liu, D. H. Edgell y R. Pardo. "Monte Carlo beam capture and charge breeding simulation". Review of Scientific Instruments 77, n.º 3 (marzo de 2006): 03B106. http://dx.doi.org/10.1063/1.2170105.
Texto completoAkeyoshi, Tomoyuki, Koichi Maezawa, Masaaki Tomizawa y Takashi Mizutani. "Monte Carlo Study of Charge Injection Transistors (CHINTs)". Japanese Journal of Applied Physics 32, Part 1, No. 1A (15 de enero de 1993): 26–30. http://dx.doi.org/10.1143/jjap.32.26.
Texto completoZiaeian, Iman y Károly Tőkési. "nl-Selective Classical Charge-Exchange Cross Sections in Be4+ and Ground State Hydrogen Atom Collisions". Atoms 10, n.º 3 (9 de septiembre de 2022): 90. http://dx.doi.org/10.3390/atoms10030090.
Texto completoNicolis, Nikolaos George y Athanasios Chatzikotelis. "Development of a simple algorithm for pre-fragment formation in proton-nucleus spallation reactions". HNPS Advances in Nuclear Physics 29 (5 de mayo de 2023): 196–99. http://dx.doi.org/10.12681/hnpsanp.5084.
Texto completoIllescas, Clara, Luis Méndez, Santiago Bernedo y Ismanuel Rabadán. "Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study". International Journal of Molecular Sciences 24, n.º 3 (21 de enero de 2023): 2172. http://dx.doi.org/10.3390/ijms24032172.
Texto completoBuscemi, Fabrizio, Enrico Piccinini, Rossella Brunetti, Massimo Rudan y Carlo Jacoboni. "Monte Carlo simulation of charge transport in amorphous chalcogenides". Journal of Applied Physics 106, n.º 10 (15 de noviembre de 2009): 103706. http://dx.doi.org/10.1063/1.3259421.
Texto completoJakobsson, Mattias y Sven Stafström. "A Monte Carlo study of charge transfer in DNA". Journal of Chemical Physics 129, n.º 12 (28 de septiembre de 2008): 125102. http://dx.doi.org/10.1063/1.2981803.
Texto completoTesis sobre el tema "Monte-Charge"
Aung, Pyie Phyo. "Monte Carlo Simulations of charge Transport in Organic Semiconductors". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1418272111.
Texto completoJakobsson, Mattias. "Monte Carlo Studies of Charge Transport Below the Mobility Edge". Doctoral thesis, Linköpings universitet, Beräkningsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74322.
Texto completoKrapohl, David. "Monte Carlo and Charge Transport Simulation of Pixel Detector Systems". Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24763.
Texto completoCoco, Marco. "Monte Carlo study of charge and phonon transport in graphene". Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3811.
Texto completoVolpi, Riccardo. "Charge Transport Simulations for Organic Electronics : A Kinetic Monte Carlo Approach". Licentiate thesis, Linköpings universitet, Teoretisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122991.
Texto completoGonçalves, Thomas. "Contributions à la parallélisation de méthodes de type transport Monte-Carlo". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM047/document.
Texto completoMonte Carlo particle transport applications consist in studying the behaviour of particles moving about a simulation domain. Particles distribution among simulation domains is not uniform and change dynamically during simulation. The parallelization of this kind of applications on massively parallel architectures leads to solve a complex issue of workloads and data balancing among numerous compute cores.We started by identifying parallelization pitfalls of Monte Carlo particle transport applications using theoretical and experimental analysis of reference parallelization methods. A semi-dynamic based on partitioning techniques has been proposed then. Finally, we defined a dynamic approach able to redistribute workloads and data keeping a low communication volume. The dynamic approach obtains speedups using strong scaling and a memory footprint reduction compared to the perfectly balanced domain replication method
Hjelm, Mats. "Monte Carlo Simulations of Homogeneous and Inhomogeneous Transport in Silicon Carbide". Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3700.
Texto completoThe importance of simulation is increasing in the researchon semiconductor devices and materials. Simulations are used toexplore the characteristics of novel devices as well asproperties of the semiconductor materials that are underinvestigation, i.e. generally materials where the knowledge isinsufficient. A wide range of simulation methods exists, andthe method used in each case is selected according to therequirements of the work performed. For simulations of newsemiconductor materials, extremely small devices, or deviceswhere non-equilibrium transport is important, the Monte Carlo(MC) method is advantageous, since it can directly exploit themodels of the important physical processes in the device.
One of the semiconductors that have attracted a lot ofattraction during the last decade is silicon carbide (SiC),which exists in a large number of polytypes, among which3C-SiC, 4H-SiC and 6H-SiC are most important. Although SiC hasbeen known for a very long time, it may be considered as a newmaterial due to the relatively small knowledge of the materialproperties. This dissertation is based on a number of MCstudies of both the intrinsic properties of different SiCpolytypes and the qualities of devices fabricated by thesepolytypes. In order to perform these studies a new full-bandensemble device MC simulator, the General Monte CarloSemiconductor (GEMS) simulator was developed. Algorithmsimplemented in the GEMS simulator, necessary when allmaterial-dependent data are numerical, and for the efficientsimulation of a large number of charge carriers in high-dopedareas, are also presented. In addition to the purely MC-relatedstudies, a comparison is made between the MC, drift-diffusion,and energy-balance methods for simulation of verticalMESFETs.
The bulk transport properties of electrons in 2H-, 3C-, 4H-and 6H-SiC are studied. For high electric fields the driftvelocity, and carrier mean energy are presented as functions ofthe field. For 4H-SiC impact-ionization coefficients,calculated with a detailed quantum-mechanical model ofband-to-band tunneling, are presented. Additionally, a study oflow-field mobility in 4H-SiC is presented, where the importanceof considering the neutral impurity scattering, also at roomtemperature, is pointed out.
The properties of 4H- and 6H-SiC when used in short-channelMOSFETs, assuming a high quality semiconductor-insulatorinterface, are investigated using a simple model for scatteringin the semiconductor-insulator interface. Furthermore, theeffect is studied on the low and high-field surface mobility,of the steps formed by the common off-axis-normal cutting ofthe 4H- and 6H-SiC crystals. In this study an extension of theprevious-mentioned simple model is used.
Islam, Sharnali. "ATOMISTIC MODELING OF UNINTENTIONAL SINGLE CHARGE EFFECTS IN NANOSCALE FETS". OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/209.
Texto completoGali, Sai Manoj. "Modélisation des relations structure / propriétés de transport de charge dans les matériaux pour l'électronique organique". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0693/document.
Texto completoWith the advancement of technology, miniaturized electronic devices are progressively integrated into our everyday lives, generating concerns about cost, efficiency and environmental impact of electronic waste. Organic electronics offers a tangible solution paving the way for low-cost, flexible, transparent and environment friendly devices. However, improving the functionalities of organic (opto) electronic devices such as light emitting diodes and photovoltaics still poses technological challenges due to factors like low efficiencies, performance stability, flexibility etc. Although more and more organic materials are being developed to meet these challenges, one of the fundamental concerns still arises from the lack of established protocols that correlate the inherent properties of organic materials like the chemical structure, molecular conformation, supra-molecular arrangement to their resulting charge-transport characteristics.In this context, this thesis addresses the prediction of charge transport properties of organic semiconductors through theoretical and computational studies at the atomistic scale, developed along three main axes :(I) Structure-charge transport relationships of crystalline organic materials and the role of energetic fluctuations in amorphous polymeric organic semiconductors. Kinetic Monte-Carlo (KMC) studies employing the Marcus-Levich-Jortner rate formalism are performed on ten crystalline Group IV phthalocyanine derivatives and trends linking the crystalline arrangement to the anisotropic mobility of electrons and holes are obtained. Subsequently, KMC simulations based on the simpler Marcus formalism are performed on an amorphous semiconducting fluorene-triphenylamine (TFB) copolymer, to highlight the impact of energetic fluctuations on charge transport characteristics. A methodology is proposed to include these fluctuations towards providing a semi-quantitative estimate of charge-carrier mobilities at reduced computational cost.(II) Impact of a mechanical strain on the electronic and charge transport properties of crystalline organic materials. Crystalline rubrene and its polymorphs, as well as BTBT derivatives (well studied high mobility organic materials) are subjected to mechanical strain and their electronic response is analyzed. Employing tools like Molecular Dynamic (MD) simulations and plane wave DFT (PW-DFT) calculations, unusual electro-mechanical coupling between different crystallographic axes is demonstrated, highlighting the role of inherent anisotropy that is present in the organic single crystals which translates in an anisotropy of their electro-mechanical coupling.(III) Protonation-dependent conformation of polyelectrolyte and its role in governing the conductivity of polymeric conducting complexes. Polymeric bis(sulfonyl)imide substituted polystyrenes are currently employed as counter-ions and dopants for conducting poly(3,4-ethylenedioxythiophene) (PEDOT), resulting in PEDOT-polyelectrolyte conducting complexes. Employing MD simulations and DFT calculations, inherent characteristics of the polyelectrolyte like its acid-base behavior, protonation state and conformation, are analyzed in conjunction with available experimental data and the role of these characteristics in modulating the conductivity of resulting PEDOT-polyelectrolyte conducting complexes is highlighted.The above studies, performed on different organic electronic systems, emphasize the importance of inherent characteristics of organic materials in governing the charge transport behavior in these materials. By considering the inherent characteristics of organic electronic materials and systematically incorporating them into simulation models, accuracy of simulation predictions can be greatly improved, thereby serving not only as a tool to design new, stable and high performance organic materials but also for optimizing device performances
Renoud, Raphaël. "Simulation par la méthode de Monte-Carlo de la charge d'un isolant soumis au bombardement d'un faisceau électronique focalisé". Lyon 1, 1995. http://www.theses.fr/1995LYO10029.
Texto completoLibros sobre el tema "Monte-Charge"
Margat, Claude. Le monte-charge: Roman. Paris: Ecriture, 1992.
Buscar texto completoHe, Qiaozhi. Dian ti gu zhang yu pai chu. Beijing Shi: Ji xie gong ye chu ban she, 2002.
Buscar texto completo-, Keraval Gwen 19, ed. Réveillon en sous-sol. Paris: Magnard jeunesse, 2003.
Buscar texto completoDaniel, Dumont, ed. Jonas dans l'ascenseur. Saint-Lambert, Québec: Héritage, 1995.
Buscar texto completoSchwab, Adolf J. Field Theory Concepts: Electromagnetic Fields Maxwell's Equations grad, curl, div. etc. Finite-Element Method Finite-Difference Method Charge Simulation Method Monte Carlo Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Buscar texto completoField theory concepts: Electromagnetic fields, Maxwell's equations, grad, curl, div, etc. : finite-element method, finite-difference method, charge simulation method, Monte Carlo method. Berlin: Springer-Verlag, 1988.
Buscar texto completoOntario Elevator Safety Task Force. Final report of the Ontario Elevator Safety Task Force =: Rapport final du Groupe de travail sur la sécurité des ascenseurs de l'Ontario. Toronto, Ont: Ontario Elevator Safety Task Force = Groupe de travail sur la sécurité des ascenseurs de l'Ontario, 1989.
Buscar texto completoOntario Elevator Safety Task Force. Final report of the Ontario Elevator Safety Task Force =: Rapport final du Groupe de travail sur la sécurité des ascenseurs de l'Ontario. [Toronto?]: The Task Force, 1989.
Buscar texto completoThe elevator family. New York: Scholastic, 2004.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. A study of a multi-pinned phase CCD detector for use as a star tracker: Final report, July 21, 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Monte-Charge"
Kosina, H., M. Nedjalkov y S. Selberherr. "Monte Carlo Analysis of the Small-Signal Response of Charge Carriers". En Large-Scale Scientific Computing, 175–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_17.
Texto completoKoch, Erik, Olle Gunnarsson y Richard M. Martin. "Screening of a Point Charge: A Fixed-Node Diffusion Monte Carlo Study". En Springer Proceedings in Physics, 22–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59689-6_3.
Texto completoMuscato, O. "Monte Carlo Verification of an Extended Hydrodynamic Model Describing Charge Carrier Transport in Semiconductors". En Progress in Industrial Mathematics at ECMI 2000, 179–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04784-2_23.
Texto completoRahmani-Andebili, Mehdi. "Estimating the State of Charge of Plug-In Electric Vehicle Fleet Applying Monte Carlo Markov Chain". En Planning and Operation of Plug-In Electric Vehicles, 211–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18022-5_7.
Texto completoWang, Jianxin, Tiejun Li, Hua Zhang, Jiatao Zhang, Zhuo Chen, Dan Wang y Lijun Wang. "Particle-In-Cell/Monte Carlo Collisional Simulation of Space Charge Layer Formation and Development in Nitrogen Negative Streamers". En Lecture Notes in Electrical Engineering, 147–54. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7393-4_14.
Texto completoIshizuka, Hiroaki. "Benchmark of the Polynomial Expansion Monte Carlo Method". En Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices, 115–26. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55663-3_9.
Texto completoGubernatis, J. E. "The Spatial Dependence of Spin and Charge Correlations in a One-Dimensional, Single Impurity, Anderson Model". En Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems, 216–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83154-6_21.
Texto completoDestandau, Alain y Bétina Schneeberger. "Théâtre Monte-Charge et Théâtre Tuong Viet Nam". En Théâtres français et vietnamien, 151–58. Presses universitaires de Provence, 2014. http://dx.doi.org/10.4000/books.pup.9273.
Texto completoJoy, David C. "Charge Collection Microscopy and Cathodoluminescence". En Monte Carlo Modeling for Electron Microscopy and Microanalysis, 114–33. Oxford University PressNew York, NY, 1995. http://dx.doi.org/10.1093/oso/9780195088748.003.0007.
Texto completoChandra Sahu, Bharat. "Organic Corrosion Inhibitors". En Introduction to Corrosion - Basics and Advances [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109523.
Texto completoActas de conferencias sobre el tema "Monte-Charge"
Gallagher, Dennis J., Raymond Demara, Gary Emerson, Wayne W. Frame y Alan W. Delamere. "Monte Carlo model for describing charge transfer in irradiated CCDs". En Photonics West '98 Electronic Imaging, editado por Morley M. Blouke. SPIE, 1998. http://dx.doi.org/10.1117/12.304563.
Texto completoRengel, Raul, Jose M. Iglesias, Elena Pascual y Maria J. Martin. "Monte Carlo modeling of mobility and microscopic charge transport in supported graphene". En 2015 10th Spanish Conference on Electron Devices (CDE). IEEE, 2015. http://dx.doi.org/10.1109/cde.2015.7087445.
Texto completoNovikov, Sergey V. y Anatoly V. Vannikov. "Monte Carlo simulation of charge carrier transport in locally ordered dipolar matrices". En Optical Science, Engineering and Instrumentation '97, editado por Stephen Ducharme y James W. Stasiak. SPIE, 1997. http://dx.doi.org/10.1117/12.290231.
Texto completoMaqsood, Ishtiaq, Lance D. Cundy, Matt Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill y Venkat Bommisetty. "Charge transport kinetics in organic bulk heterojunction morphologies: Mesoscale Monte Carlo simulation analysis". En 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925261.
Texto completoWang, Zhenwei, Xiaomin Zhu y Qian Pu. "Siting public charge stations for taxis in Beijing based on Monte Carlo simulation". En 2016 International Conference on Logistics, Informatics and Service Sciences (LISS). IEEE, 2016. http://dx.doi.org/10.1109/liss.2016.7854403.
Texto completoIngrosso, G., L. Selmi y E. Sangiorgi. "Monte Carlo Simulation of Program and Erase Charge Distributions in NROM(TM) Devices". En 32nd European Solid-State Device Research Conference. IEEE, 2002. http://dx.doi.org/10.1109/essderc.2002.194901.
Texto completoPasmore, Tom A., J. Daniel Harper, Julian Talbot y Hilary S. Lackritz. "Monte Carlo Simulations of Charge Transport in Polymers for Second Order Nonlinear Optics". En Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.10.
Texto completoHe, Xingxi y Donald J. Leo. "Monte-Carlo Simulation of Ion Transport at the Polymer-Metal Interface". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79765.
Texto completoSong, Yucheng, Zhiliang Xia, Jinfeng Yang, Gang Du, Jinfeng Kang, Ruqi Han y Xiaoyan Liu. "Simulation of flash memory including charge trapping and de-trapping by Monte Carlo method". En 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306482.
Texto completo"Kinetic Equation Method and Monte Carlo Method for Charge Carriers Dynamics Description in Diamond". En International Conference on Photonics, Optics and Laser Technology. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004809801220126.
Texto completo