Literatura académica sobre el tema "Monte Carlo Simulation Technique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Monte Carlo Simulation Technique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Monte Carlo Simulation Technique"
JAKUMEIT, JÜRGEN. "COMPUTATIONAL ASPECTS OF THE LOCAL ITERATIVE MONTE CARLO TECHNIQUE". International Journal of Modern Physics C 11, n.º 04 (junio de 2000): 665–73. http://dx.doi.org/10.1142/s0129183100000584.
Texto completoSuzuki, SHO, NAOKI Takano y MITSUTERU ASAI. "F406 Monte Carlo Simulation of dynamic problem using Model Order Reduction Technique". Proceedings of The Computational Mechanics Conference 2011.24 (2011): _F—58_—_F—59_. http://dx.doi.org/10.1299/jsmecmd.2011.24._f-58_.
Texto completoSWENDSEN, ROBERT H., BRIAN DIGGS, JIAN-SHENG WANG, SHING-TE LI, CHRISTOPHER GENOVESE y JOSEPH B. KADANE. "TRANSITION MATRIX MONTE CARLO". International Journal of Modern Physics C 10, n.º 08 (diciembre de 1999): 1563–69. http://dx.doi.org/10.1142/s0129183199001340.
Texto completoMarjanovic, Srdjan y Milovan Suvakov. "Monte Carlo simulation of positronium thermalization in gases". Chemical Industry 64, n.º 3 (2010): 177–81. http://dx.doi.org/10.2298/hemind091221025m.
Texto completoNedjalkov, M. y P. Vitanov. "MONTE CARLO TECHNIQUE FOR SIMULATION OF HIGH ENERGY ELECTRONS". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 10, n.º 4 (abril de 1991): 525–30. http://dx.doi.org/10.1108/eb051726.
Texto completoJuang, C. H., X. H. Huang y D. J. Elton. "Fuzzy information processing by the Monte Carlo simulation technique". Civil Engineering Systems 8, n.º 1 (marzo de 1991): 19–25. http://dx.doi.org/10.1080/02630259108970602.
Texto completoFauzi, N. F. M., N. N. R. Roslan y M. I. M. Ridzuan. "Low voltage reliability equivalent using monte-carlo simulation technique". IOP Conference Series: Materials Science and Engineering 863 (13 de junio de 2020): 012042. http://dx.doi.org/10.1088/1757-899x/863/1/012042.
Texto completoKosina, H., M. Nedjalkov y S. Selberherr. "An event bias technique for Monte Carlo device simulation". Mathematics and Computers in Simulation 62, n.º 3-6 (marzo de 2003): 367–75. http://dx.doi.org/10.1016/s0378-4754(02)00245-8.
Texto completoLetosa, J., M. Garcia-Gracia, J. M. Fornies-Marquina y J. M. Artacho. "Performance limits in TDR technique by Monte Carlo simulation". IEEE Transactions on Magnetics 32, n.º 3 (mayo de 1996): 958–61. http://dx.doi.org/10.1109/20.497401.
Texto completoSherniyozov, A. A. y Sh D. Payziyev. "Simulating optical processes: Monte Carlo photon tracing method". «Узбекский физический журнал» 24, n.º 3 (11 de septiembre de 2022): 157–62. http://dx.doi.org/10.52304/.v24i3.357.
Texto completoTesis sobre el tema "Monte Carlo Simulation Technique"
Rangaraj, Dharanipathy. "Multicomponent aerosol dynamics : exploration of direct simulation Monte Carlo technique /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3144452.
Texto completoJackson, Andrew N. "Structural phase behaviour via Monte Carlo techniques". Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/4850.
Texto completoCan, Mutan Oya. "Comparison Of Regression Techniques Via Monte Carlo Simulation". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605175/index.pdf.
Texto completoLouvin, Henri. "Development of an adaptive variance reduction technique for Monte Carlo particle transport". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS351/document.
Texto completoThe Adaptive Multilevel Splitting algorithm (AMS) has recently been introduced to the field of applied mathematics as a variance reduction scheme for Monte Carlo Markov chains simulation. This Ph.D. work intends to implement this adaptative variance reduction method in the particle transport Monte Carlo code TRIPOLI-4, dedicated among others to radiation shielding and nuclear instrumentation studies. Those studies are characterized by strong radiation attenuation in matter, so that they fall within the scope of rare events analysis. In addition to its unprecedented implementation in the field of particle transport, two new features were developed for the AMS. The first is an on-the-fly scoring procedure, designed to optimize the estimation of multiple scores in a single AMS simulation. The second is an extension of the AMS to branching processes, which are common in radiation shielding simulations. For example, in coupled neutron-photon simulations, the neutrons have to be transported alongside the photons they produce. The efficiency and robustness of AMS in this new framework have been demonstrated in physically challenging configurations (particle flux attenuations larger than 10 orders of magnitude), which highlights the promising advantages of the AMS algorithm over existing variance reduction techniques
Nilsson, Emma. "Monte Carlo simulation techniques : The development of a general framework". Thesis, Linköping University, Department of Management and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18327.
Texto completoAlgorithmica Research AB develops software application for the financial markets. One of their products is Quantlab that is a tool for quantitative analyses. An effective method to value several financial instruments is Monte Carlo simulation. Since it is a common method Algorithmica is interesting in investigating if it is possible to create a Monte Carlo framework.
A requirement from Algorithmica is that the framework is general and this is the main problem to solve. It is difficult to generate a generalized framework because financial derivatives have very different appearances. To simplify the framework the thesis will be delimitated to European style derivatives where the underlying asset is following a Geometric Brownian Motion.
The definition of the problem and delimitation were defined gradually, in parallel with the review of literature, this to be able to decide what purpose, and delimitations that is reasonable to treat. Standard Monte Carlo requires a large number of trials and is therefore slow. To speed up the process there exist different variance reduction techniques and also Quasi Monte Carlo simulation, where deterministic numbers (low discrepancy sequences) is used instead of random. The thesis investigated the variance reduction techniques; control variate technique, antithetic variate technique, and the low discrepancy sequences; Sobol, Faure and Halton.
Three test instruments were chosen to test the framework, an Asian option and a Barrier option where the purpose is to conclude which Monte Carle method that performs best, and also a structured product; Smart Start, that is more complex and the purpose is to test that the framework can handle it.
To increase the understanding of the theory the Halton, Faure and Sobol sequence were implemented in Quantlab in parallel with the review of literature. The Halton and Faure sequences also seemed to perform worse than Sobol so they were not further analyzed.
The developing of the framework was an iterative process. The chosen solution is to design a general framework by using five function pointers; the path generator, the payoff function, the stop criterion function and the volatility and interest rates. The user specifies these functions by him/her given some obligatory input and output values. It is not a problem-free solution to use function pointers and several conflicts and issues are defined, therefore it is not recommended to implement the framework as it is designed today.
In parallel with the developing of the framework several experiments on the Asian and Barrier options were performed with varying result and it is not possible to draw a conclusion on which method that is best. Often Sobol seems to converge better and fluctuates less than standard Monte Carlo. The literature indicates that it is important that the user has an understanding of the instrument that should be valued, the stochastic process it follows and the advantages and disadvantages of different Monte Carlo methods. It is recommended to evaluate the different method with experiments, before deciding which method to use when valuing a new derivative.
Ahmad, Abdul Ossman. "Advances in an open-source direct simulation Monte Carlo technique for hypersonic rarefied gas flows". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26579.
Texto completoLester, Christopher. "Efficient simulation techniques for biochemical reaction networks". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:bb804e01-b1de-409f-b843-4806c2c990c2.
Texto completoBaker, Adam Richard Ernest. "The use of the Monte Carlo technique in the simulation of small-scale dosimeters and microdosimeters". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/2897/.
Texto completoMastail, Cédric. "Modélisation et simulation du dépôt des oxydes à forte permittivité par la technique du Monte-Carlo cinétique". Toulouse 3, 2009. http://thesesups.ups-tlse.fr/989/.
Texto completoMiniaturizing components requires radical changes in the development of future micro electronic devices. In this perspective, the gate dielectric of MOS devices can become so thin as to be made permeable to leakage currents. One solution is to replace SiO2 by a material with a higher permittivity which would allow the use of thicker layers with similar results. My work presents a multi-scale modelling of the growth of HfO2 on Si by atomic layer (ALD), which allows me to link the nano-structuration of an interface with the process of development. I demonstrate that knowing how basic chemical processes work, thanks to DFT calculations, allows considering a process simulation based on the development of a Kinetic Monte Carlo software named "HIKAD. " Going beyond rather obvious mechanisms, I introduce the notion of densification mechanisms of deposited oxide layers. These mechanisms are the key element to understand how the growth of the layer in terms of coverage works. But even beyond that aspect, they allow to study the system's evolution towards a massive material, starting from molecular reactions. I shall discuss all those points in the light of recent experimental characterisation results concerning the deposition of hafnium oxides
Mastail, Cedric. "Modélisation et simulation du dépôt des oxydes à forte permittivité par la technique du Monte-Carlo cinétique". Phd thesis, Université Paul Sabatier - Toulouse III, 2009. http://tel.archives-ouvertes.fr/tel-00541993.
Texto completoLibros sobre el tema "Monte Carlo Simulation Technique"
Mun, Johnathan. Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques. 2a ed. New York: Wiley, 2010.
Buscar texto completoModeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques. Hoboken, NJ: John Wiley & Sons, 2006.
Buscar texto completoMooney, Christopher. Monte Carlo Simulation. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 1997. http://dx.doi.org/10.4135/9781412985116.
Texto completoMonte Carlo simulation. Thousand Oaks, Calif: Sage Publications, 1997.
Buscar texto completoZhu, Zhen y Hari Rajagopalan. Monte Carlo Simulation. 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc., 2023. http://dx.doi.org/10.4135/9781071908969.
Texto completoHess, Karl, ed. Monte Carlo Device Simulation. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4026-7.
Texto completoThomopoulos, Nick T. Essentials of Monte Carlo Simulation. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6022-0.
Texto completoBrandimarte, Paolo. Handbook in Monte Carlo Simulation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118593264.
Texto completoGleißner, Werner y Marco Wolfrum. Risikoaggregation und Monte-Carlo-Simulation. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-24274-9.
Texto completoPierre, L' Ecuyer y Owen Art B, eds. Monte Carlo and quasi-Monte Carlo methods 2008. Heidelberg: Springer, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Monte Carlo Simulation Technique"
Frenkel, D. "Advanced Monte Carlo Techniques". En Computer Simulation in Chemical Physics, 93–152. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1679-4_4.
Texto completoWoolard, D. L., H. Tian, M. A. Littlejohn, R. J. Trew y K. W. Kim. "The Application of Monte Carlo Techniques in Advanced Hydrodynamic Transport Models". En Monte Carlo Device Simulation, 219–66. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4026-7_8.
Texto completoDemirtas, Hakan. "A Multiple Imputation Framework for Massive Multivariate Data of Different Variable Types: A Monte-Carlo Technique". En Monte-Carlo Simulation-Based Statistical Modeling, 143–62. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3307-0_8.
Texto completoSarrut, D. y N. Krah. "Artificial Intelligence and Monte Carlo Simulation". En Monte Carlo Techniques in Radiation Therapy, 251–58. 2a ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211846-20.
Texto completoHanagaki, Kazunori, Junichi Tanaka, Makoto Tomoto y Yuji Yamazaki. "Event Simulation". En Experimental Techniques in Modern High-Energy Physics, 115–23. Tokyo: Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-56931-2_7.
Texto completoL'Ecuyer, Pierre, François Le Gland, Pascal Lezaud y Bruno Tuffin. "Splitting Techniques". En Rare Event Simulation using Monte Carlo Methods, 39–61. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470745403.ch3.
Texto completoThomson, Rowan M., Åsa Carlsson Tedgren, Gabriel Fonseca, Guillaume Landry, Brigitte Reniers, Mark J. Rivard, Jeffrey F. Williamson y Frank Verhaegen. "Monte Carlo Simulation in Brachytherapy Patients and Applicator Modelling". En Monte Carlo Techniques in Radiation Therapy, 235–49. 2a ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211846-19.
Texto completoShigeta, K., K. Tanaka, T. Iizuka, H. Kato y H. Matsumoto. "A New Statistical Enhancement Technique in Parallelized Monte Carlo Device Simulation". En Simulation of Semiconductor Devices and Processes, 384–87. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-6619-2_93.
Texto completoSiwach, Vikash, Manju S. Tonk y Hemant Poonia. "Simulation of Queues in Sugar Mills Using Monte Carlo Technique". En Springer Proceedings in Mathematics & Statistics, 481–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7272-0_33.
Texto completoAllen, Theodore T. "Variance Reduction Techniques and Quasi-Monte Carlo". En Introduction to Discrete Event Simulation and Agent-based Modeling, 111–24. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-139-4_8.
Texto completoActas de conferencias sobre el tema "Monte Carlo Simulation Technique"
Graham, G. E. "DZero Monte Carlo simulation". En ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH: VII International Workshop; ACAT 2000. AIP, 2001. http://dx.doi.org/10.1063/1.1405336.
Texto completoBaoxin Li, R. Chellappa y Hankyu Moon. "Monte Carlo simulation techniques for probabilistic tracking". En Conference Record. Thirty-Fifth Asilomar Conference on Signals, Systems and Computers. IEEE, 2001. http://dx.doi.org/10.1109/acssc.2001.986883.
Texto completoAmini, Abolfazl M., George E. Ioup y Juliette W. Ioup. "Metropolis Monte Carlo deconvolution technique compared to iterative methods for noisy data". En Aerospace/Defense Sensing, Simulation, and Controls, editado por Ivan Kadar. SPIE, 2001. http://dx.doi.org/10.1117/12.436983.
Texto completoAbu Husain, M. K., N. I. Mohd Zaki, M. B. Johari y G. Najafian. "Extreme Response Prediction for Fixed Offshore Structures by Monte Carlo Time Simulation Technique". En ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54200.
Texto completoDrosg, M., Marianne E. Hamm y Robert W. Hamm. "Complete Monte Carlo Simulation of Neutron Scattering Experiments". En APPLICATIONS OF NUCLEAR TECHNIQUES: Eleventh International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665300.
Texto completoBOWLES, ROLAND, TONY LAITURI y GEORGE TREVINO. "A Monte Carlo simulation technique for low-altitude, wind-shear turbulence". En 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-564.
Texto completoSadowsky, J. S. y J. A. Bucklew. "Large deviations theory techniques in Monte Carlo simulation". En the 21st conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/76738.76804.
Texto completoPerry, Vincent, Wendy Gao, Michael Chen, J. Michael Barton y Simon Su. "Visualization Techniques for Large-Scale Monte Carlo Simulation". En 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006423.
Texto completoIrimia, Daniel y Jens O. M. Karlsson. "Monte Carlo Simulation of Ice Formation in Tissues". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32681.
Texto completoRen, Xiao-ping, Yun Yang, Fang Nan, Zi-yu Li, Jing-ru Chi y Fan Yang. "An Indicator Determination Technique based on Delphi Approach and Monte Carlo Simulation". En 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019. http://dx.doi.org/10.1109/ccdc.2019.8833173.
Texto completoInformes sobre el tema "Monte Carlo Simulation Technique"
Glaser, R. Monte Carlo simulation of scenario probability distributions. Office of Scientific and Technical Information (OSTI), octubre de 1996. http://dx.doi.org/10.2172/632934.
Texto completoXu, S. L., B. Lai y P. J. Viccaro. APS undulator and wiggler sources: Monte-Carlo simulation. Office of Scientific and Technical Information (OSTI), febrero de 1992. http://dx.doi.org/10.2172/10134610.
Texto completoDouglas, L. J. Monte Carlo Simulation as a Research Management Tool. Office of Scientific and Technical Information (OSTI), junio de 1986. http://dx.doi.org/10.2172/1129252.
Texto completoAguayo Navarrete, Estanislao, Austin S. Ankney, Timothy J. Berguson, Richard T. Kouzes, John L. Orrell, Meredith D. Troy y Clinton G. Wiseman. Monte Carlo Simulation Tool Installation and Operation Guide. Office of Scientific and Technical Information (OSTI), septiembre de 2013. http://dx.doi.org/10.2172/1095434.
Texto completoXu, S. L., B. Lai y P. J. Viccaro. APS undulator and wiggler sources: Monte-Carlo simulation. Office of Scientific and Technical Information (OSTI), febrero de 1992. http://dx.doi.org/10.2172/5494991.
Texto completoBoyd, Lain D. Monte Carlo Simulation of Radiation in Hypersonic Flows. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2002. http://dx.doi.org/10.21236/ada414031.
Texto completoClegg, Benjamin Wyatt, David H. Collins, Jr. y Aparna V. Huzurbazar. Petri Nets for Adversarial Models using Monte Carlo Simulation. Office of Scientific and Technical Information (OSTI), septiembre de 2018. http://dx.doi.org/10.2172/1473775.
Texto completoRensink, M. E. y T. D. Rognlien. Progress on coupling UEDGE and Monte-Carlo simulation codes. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/380308.
Texto completoMartin, William R., James Paul Holloway, Kaushik Banerjee, Jesse Cheatham y Jeremy Conlin. Global Monte Carlo Simulation with High Order Polynomial Expansions. Office of Scientific and Technical Information (OSTI), diciembre de 2007. http://dx.doi.org/10.2172/920974.
Texto completoHolliday, Mary R. Methodology of an Event-Driven Monte Carlo Missile Simulation. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1989. http://dx.doi.org/10.21236/ada601300.
Texto completo