Literatura académica sobre el tema "Monotonicity formulae"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Monotonicity formulae".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Monotonicity formulae"
Engelfriet, J. "Monotonicity and Persistence in Preferential Logics". Journal of Artificial Intelligence Research 8 (1 de enero de 1998): 1–21. http://dx.doi.org/10.1613/jair.461.
Texto completoDjaa, Nour Elhouda, Ahmed Mohamed Cherif y Kaddour Zegga. "Monotonicity formulae and F-stress energy". Bulletin of the Transilvania University of Brasov Series III Mathematics and Computer Science 1(63), n.º 1 (7 de octubre de 2021): 81–96. http://dx.doi.org/10.31926/but.mif.2021.1.63.1.7.
Texto completoEvans, Lawrence C. "Monotonicity formulae for variational problems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 2005 (28 de diciembre de 2013): 20120339. http://dx.doi.org/10.1098/rsta.2012.0339.
Texto completoLi, Jintang. "Monotonicity formulae and vanishing theorems". Pacific Journal of Mathematics 281, n.º 1 (9 de febrero de 2016): 125–36. http://dx.doi.org/10.2140/pjm.2016.281.125.
Texto completoFazly, Mostafa y Juncheng Wei. "On stable solutions of the fractional Hénon–Lane–Emden equation". Communications in Contemporary Mathematics 18, n.º 05 (18 de julio de 2016): 1650005. http://dx.doi.org/10.1142/s021919971650005x.
Texto completoFazly, Mostafa y Henrik Shahgholian. "Monotonicity formulas for coupled elliptic gradient systems with applications". Advances in Nonlinear Analysis 9, n.º 1 (6 de junio de 2019): 479–95. http://dx.doi.org/10.1515/anona-2020-0010.
Texto completoWang, Jiaxiang y Bin Zhou. "Monotonicity formulae for the complex Hessian equations". Methods and Applications of Analysis 28, n.º 1 (2021): 77–84. http://dx.doi.org/10.4310/maa.2021.v28.n1.a6.
Texto completoNikolov, Geno. "On the monotonicity of sequences of quadrature formulae". Numerische Mathematik 62, n.º 1 (diciembre de 1992): 557–65. http://dx.doi.org/10.1007/bf01396243.
Texto completoFried, Eliot y Luca Lussardi. "Monotonicity formulae for smooth extremizers of integral functionals". Rendiconti Lincei - Matematica e Applicazioni 30, n.º 2 (21 de junio de 2019): 365–77. http://dx.doi.org/10.4171/rlm/851.
Texto completoDong, Y. y H. Lin. "MONOTONICITY FORMULAE, VANISHING THEOREMS AND SOME GEOMETRIC APPLICATIONS". Quarterly Journal of Mathematics 65, n.º 2 (28 de marzo de 2013): 365–97. http://dx.doi.org/10.1093/qmath/hat009.
Texto completoTesis sobre el tema "Monotonicity formulae"
Edquist, Anders. "Monotonicity formulas and applications in free boundary problems". Doctoral thesis, KTH, Matematik (Avd.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12405.
Texto completoQC20100621
OGNIBENE, ROBERTO. "Monotonicity formulas and blow-up methods for the study of spectral stability and fractional obstacle problems". Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1431735.
Texto completoLan, Yang. "Dynamique asymptotique pour des équations de KdV généralisées L2 critiques et surcritiques". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS123/document.
Texto completoIn this thesis, we deal with the long time dynamics for solutions of the L2 critical and supercritical generalized KdV equations.The first part of this work is devoted to construct a stable self-similar blow up dynamics for slightly L2 supercritical gKdV equations in the energy space H1. The proof relies on the self-similar profile constructed by H. Koch. We will also give a specific description of the formation of singularity near the blow up time.The second part is devoted to construct blow up solutions to the slightly L2 supercritical gKdV equations with multiple blow up points. The key idea is to consider solutions which behaves like a decoupled sum of bubbles. And each bubble behaves like a self-similar blow up solutions with a single blow up point. Then we can use a classic topological argument to ensure that each bubble blows up at the same time. Here, we require a higher regularity of the initial data to control the solution between the different blow up points.Finally, in the third part, we consider the L2 critical gKdV equations with a saturated perturbation. In this case, any solution with initial data in H1 is always global in time and bounded in H1. We will give a explicit classification of the flow near the ground states. Under some suitable decay assumptions, there are only three possibilities: (i) the solution converges asymptotically to a solitary wave; (ii) the solution is always in some small neighborhood of the modulated family of the ground state, but blows down at infinite time; (iii) the solution leaves any small neighborhood of the modulated family of the ground state
Eriksson, Jonatan. "On the pricing equations of some path-dependent options". Doctoral thesis, Uppsala : Department of Mathematics, Univ. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6329.
Texto completoSOAVE, NICOLA. "Variational and geometric methods for nonlinear differential equations". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.
Texto completo"Monotonicity formulae in geometric variational problems". 2002. http://library.cuhk.edu.hk/record=b5896025.
Texto completoThesis (M.Phil.)--Chinese University of Hong Kong, 2002.
Includes bibliographical references (leaves 86-89).
Chapter 0 --- Introduction --- p.5
Chapter 1 --- Preliminary --- p.11
Chapter 1.1 --- Background in analysis --- p.11
Chapter 1.1.1 --- Holder Continuity --- p.11
Chapter 1.1.2 --- Hausdorff Measure --- p.12
Chapter 1.1.3 --- Weak Derivatives --- p.13
Chapter 1.2 --- Basic Facts of Harmonic Functions --- p.14
Chapter 1.2.1 --- Harmonic Approximation --- p.14
Chapter 1.2.2 --- Elliptic Regularity --- p.15
Chapter 1.3 --- Background in geometry --- p.16
Chapter 1.3.1 --- Notations and Symbols --- p.16
Chapter 1.3.2 --- Nearest Point Projection --- p.16
Chapter 2 --- Monotonicity formula and Regularity of Harmonic maps --- p.17
Chapter 2.1 --- Energy Minimizing Maps --- p.17
Chapter 2.2 --- Variational Equations --- p.18
Chapter 2.3 --- Monotonicity Formula --- p.21
Chapter 2.4 --- A Technical Lemma --- p.22
Chapter 2.5 --- Luckhau's Lemma --- p.28
Chapter 2.6 --- Reverse Poincare Inequality --- p.40
Chapter 2.7 --- ε-Regularity of Energy Minimizing Maps --- p.45
Chapter 3 --- Monotonicity Formulae and Vanishing Theorems --- p.52
Chapter 3.1 --- Stress energy tensor and basic formulae for harmonic p´ؤforms --- p.52
Chapter 3.2 --- Monotonicity formula --- p.59
Chapter 3.2.1 --- Monotonicity Formula for Harmonic Maps --- p.64
Chapter 3.2.2 --- Bochner-Weitzenbock Formula --- p.65
Chapter 3.3 --- Conservation Law and Vanishing Theorem --- p.68
Chapter 4 --- On conformally compact Einstein Manifolds --- p.71
Chapter 4.1 --- Energy Decay of Harmonic Maps with Finite Total Energy --- p.73
Chapter 4.2 --- Vanishing Theorem of Harmonic Maps --- p.81
Bibliography --- p.86
GERACI, FRANCESCO. "The Classical Obstacle Problem for nonlinear variational energies and related problems". Doctoral thesis, 2017. http://hdl.handle.net/2158/1079281.
Texto completoCapítulos de libros sobre el tema "Monotonicity formulae"
Bellettini, Giovanni. "Huisken’s monotonicity formula". En Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations, 59–68. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-429-8_4.
Texto completoRitoré, Manuel y Carlo Sinestrari. "Huisken’s monotonicity formula". En Mean Curvature Flow and Isoperimetric Inequalities, 28–32. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0213-6_9.
Texto completoCaffarelli, Luis y Sandro Salsa. "Monotonicity formulas and applications". En Graduate Studies in Mathematics, 211–34. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/gsm/068/12.
Texto completoEcker, Klaus. "Integral Estimates and Monotonicity Formulas". En Regularity Theory for Mean Curvature Flow, 47–79. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8210-1_4.
Texto completoVelichkov, Bozhidar. "The Weiss Monotonicity Formula and Its Consequences". En Lecture Notes of the Unione Matematica Italiana, 125–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13238-4_9.
Texto completoBlanchette, Jasmin Christian y Alexander Krauss. "Monotonicity Inference for Higher-Order Formulas". En Automated Reasoning, 91–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14203-1_8.
Texto completoMantegazza, Carlo. "Monotonicity Formula and Type I Singularities". En Lecture Notes on Mean Curvature Flow, 49–84. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0145-4_3.
Texto completoShahgholian, Henrik. "The Impact of Monotonicity Formulas in Regularity of Free Boundaries". En European Congress of Mathematics, 313–18. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8266-8_27.
Texto completoBorghini, Stefano y Lorenzo Mazzieri. "Monotonicity Formulas for Static Metrics with Non-zero Cosmological Constant". En Contemporary Research in Elliptic PDEs and Related Topics, 129–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18921-1_3.
Texto completoFocardi, Matteo, Francesco Geraci y Emanuele Spadaro. "Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications". En Advances in Mechanics and Mathematics, 185–203. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90051-9_7.
Texto completoActas de conferencias sobre el tema "Monotonicity formulae"
Azarm, S. y Wei-Chu Li. "Optimal Design Using a Two-Level Monotonicity-Based Decomposition Method". En ASME 1987 Design Technology Conferences. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/detc1987-0006.
Texto completoWilde, Douglass J. "Monotonicity Analysis of Taguchi’s Robust Circuit Design Problem". En ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0052.
Texto completoFujita, Kikuo, Naoki Ono, Yui Mitsuhashi y Yutaka Nomaguchi. "Lineup Design Method for Intermediate Product Family by Monotonicity-Guided Optimization of Nested Mini-Max Problem". En ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22211.
Texto completoCha, J. C. y R. W. Wayne. "Optimization With Discrete Variables via Recursive Quadratic Programming: Part II — Algorithm and Results". En ASME 1987 Design Technology Conferences. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/detc1987-0003.
Texto completoZhao, Wenzhong y Shapour Azarm. "A Cross-Sectional Shape Multiplier Method for Two-Level Optimum Design of Frames". En ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0068.
Texto completo