Literatura académica sobre el tema "Molecular weight"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Molecular weight".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Molecular weight"
Omer, Ahmed, Tamer Tamer y Mohamed Mohyeldin. "High-Molecular Weight of Biopolymer". Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 10. Innovatcionnaia deiatel’nost’, n.º 3 (20 de octubre de 2014): 56–70. http://dx.doi.org/10.15688/jvolsu10.2014.3.7.
Texto completoBalko, O. B. "Low Molecular Weight Pseudomonas aeruginosa Bacteriocins". Mikrobiolohichnyi Zhurnal 81, n.º 6 (30 de noviembre de 2019): 97–109. http://dx.doi.org/10.15407/microbiolj81.06.097.
Texto completoShu Xian Tiew and Misni Misran, Shu Xian Tiew and Misni Misran. "Thermal Properties of Acylated Low Molecular Weight Chitosans". Journal of the chemical society of pakistan 41, n.º 2 (2019): 207. http://dx.doi.org/10.52568/000733/jcsp/41.02.2019.
Texto completoSemba, Umeko, Yoko Shibuya, Hiroaki Okabe, Izumi Hayashi y Tetsuro Yamamoto. "Whale High-Molecular-Weight and Low-Molecular-Weight Kininogens". Thrombosis Research 97, n.º 6 (marzo de 2000): 481–90. http://dx.doi.org/10.1016/s0049-3848(99)00199-1.
Texto completoLovpchae, Zarema N. "Average Plasma Molecular Weight State in Viral Maxillary Sinusitis". Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25 de julio de 2020): 127–32. http://dx.doi.org/10.5373/jardcs/v12sp7/20202090.
Texto completoPaul, Pushpinder. "Molecular Weight Determination of Glutaminase Enzyme Produced from Erwinia". International Journal of Scientific Research 2, n.º 4 (1 de junio de 2012): 44–45. http://dx.doi.org/10.15373/22778179/apr2013/114.
Texto completoBuckley, W. T. y K. E. Buckley. "Low-molecular-weight volatile indicators of canola seed deterioration". Seed Science and Technology 37, n.º 3 (1 de octubre de 2009): 676–90. http://dx.doi.org/10.15258/sst.2009.37.3.15.
Texto completoMasubuchi, Yuichi, Yuya Doi y Takashi Uneyama. "Entanglement Molecular Weight". Nihon Reoroji Gakkaishi 48, n.º 4 (15 de septiembre de 2020): 177–83. http://dx.doi.org/10.1678/rheology.48.177.
Texto completoMulloy, B., C. Gee, S. F. Wheeler, R. Wait, E. Gray y T. W. Barrowcliffe. "Molecular Weight Measurements of Low Molecular Weight Heparins by Gel Permeation Chromatography". Thrombosis and Haemostasis 77, n.º 04 (1997): 668–74. http://dx.doi.org/10.1055/s-0038-1656031.
Texto completoLapierre, Catherine. "Investigations of low molecular weight and high molecular weight lignin fractions". Nordic Pulp & Paper Research Journal 14, n.º 2 (1 de mayo de 1999): 158–62. http://dx.doi.org/10.3183/npprj-1999-14-02-p158-162.
Texto completoTesis sobre el tema "Molecular weight"
Wright, Patricia Ann. "Understanding MS/MS fragmentation pathways of small molecular weight molecules". Thesis, University of Greenwich, 2015. http://gala.gre.ac.uk/18134/.
Texto completoNightingale, Philip D. "Low molecular weight halocarbons in seawater". Thesis, University of East Anglia, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280971.
Texto completoWaters, Benjamin Ragan. "Molecular weight modulation in polyhydroxybutyrate fermentations". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/38974.
Texto completoIncludes bibliographical references.
Polyhydroxybutyrate (PHB) is a material with significant potential for commercial applications. It has material properties similar to isotactic polypropylene; it can be produced from renewable resources; it is biodegradable. Unfortunately, it is very brittle when compared to polypropylene. The physical property that most significantly affects elastic behavior is molecular weight. In an effort to understand how molecular weight is formed in PHB production, kinetic studies of PHB fermentations have been performed using fermentation conditions which allow biomass growth and PHB production phases to be separated. These data indicate that molecular weight increases very quickly and then remains fairly constant in PHB fermentations. Additional studies have indicated that only slight changes in molecular weight can be caused by changing fermentation process conditions or using mutants of the polymerization enzyme. Additionally, one mutant polymerization enzyme has been shown to excrete moderate levels of PHB monomer, 3-hydroxybutyrate, into the fermentation media. This may have application in achieving synthetic production of PHB.
by Benjamin Ragan Waters.
Ph.D.
Li, Melissa. "A microscale molecular weight analysis method for characterizing polymers solutions of unknown concentrations". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31673.
Texto completoCommittee Chair: Hang Lu; Committee Co-Chair: Rachel Chen; Committee Member: Johnna Temenoff; Committee Member: Yonathan Thio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Aktaş, Ece. "Low-Molecular Weight Molecules as Selective Contacts for Perovskite Solar Cells". Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672777.
Texto completoLa tecnología fotovoltaica es una de las fuentes de energía limpia y renovable más prometedoras para reducir el impacto ambiental de los combustibles fósiles en las últimas décadas. en este contexto, las *perovskites son un material que ha atraído recientemente una atención importante a causa de su capacidad para conseguir eficiencias de conversión muy elevadas. Las capas de carga selectiva juegan un papel crucial en el rápido aumento del rendimiento del dispositivo y en la estabilidad de las celdas solares de *perovskita. Recientemente, la aplicación de *mono-capes auto-asemejadas formadas por moléculas orgánicas que funcionan como capas selectivas de carga en celdas solares de *perovskita ha atraído una gran atención a causa de ventajas como la rentabilidad, la estabilidad y la ausencia de aditivos. El objetivo de esta tesis es el diseño y la síntesis de nuevas moléculas que forman *mono-capes auto-asemejadas que funcionen como capas selectivas de agujeros en celdas solares de *perovskita para conseguir una eficiencia de conversión de alta de energía y una vida de envejecimiento de alto rendimiento hecha a medida.
Photovoltaic technology is one of the most promising clean and renewable energy sources to reduce the environmental impact of fossil fuels in recent decades. In this context, perovskites are a material that has recently attracted significant attention due to their ability to achieve very high conversion efficiencys. Selective charge layers play a crucial role in rapidly increasing device performance and in the stability of perovskite solar cells. Recently, the application of self-assembly mono-caps made up of organic molecules that function as selective layers of charge in solar perovskite cells has attracted great attention due to advantages such as profitability, stability and the absence of additives. The goal of this thesis is the design and synthesis of new molecules that form self-assembly mono-layers that function as selective layers of holes in solar perovskite cells to achieve high-energy conversion efficiency and a high-performance aging life tailored to size.
Adebekun, Aderinola Kolawole. "On-line control of molecular weight distribution". Thesis, Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/12039.
Texto completoHui, Yu 1977. "Heterjunctions of small molecular weight organic semiconductors". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81540.
Texto completoHoogland, J. S. "Properties of low molecular weight food surfactants". Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333908.
Texto completoAmer, Ismael. "Molecular weight effects on crystallization of polypropylene". Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6649.
Texto completoENGLISH ABSTRACT: The crystallization of polyolefins is an important parameter in determining the properties of such materials. The crystallization phenomenon generally depends on the molecular symmetry (tacticity) and molecular weight of the material. In this study, a series of polypropylenes was prepared using heterogeneous MgCl2-supported Ziegler catalysts with two different external donors, diphenyldimethoxysilane (DPDMS) and methyl-phenyldimethoxysilane (MPDMS), and two different homogeneous metallocene catalysts, racethylene- bis(indenyl) zirconium dichloride, Et(Ind)2ZrCl2 (EI), and rac-ethylene-bis(4,5,6,7- tetrahydro-1-indenyl) zirconium dichloride, Et(H4Ind)2ZrCl2 (EI(4H)). Molecular hydrogen was used as terminating agent. In order to establish a correlation between the molecular weight and the crystallization of these polymers, fractionation of the materials according to crystallizability was performed by means of temperature rising elution fractionation (TREF). This affords the opportunity of blending materials of different molecular weights but similar symmetry. These materials were characterized using various analytical techniques: differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), 13C nuclear magnetic resonance spectroscopy (13C-NMR), high temperature gel permeation chromatography (HT-GPC) and Fourier-transform infrared spectroscopy (FT-IR). DSC was used to study the bulk crystallization of different polypropylene blends, most of which showed only one melting peak. The latter is usually associated with a high degree of cocrystallization. Turbidity analysis of the different polypropylene polymers, obtained using solution crystallization analysis by laser light scattering (SCALLS), provided good crystallization information – similar to that provided by crystallization analysis fractionation (CRYSTAF) and TREF. It was also possible to differentiate between polypropylenes with similar chemical structure but different tacticity and molecular weight. SCALLS results also showed that the blends of different isotactic polypropylene polymers were miscible and cocrystallization had occurred, whereas, the blends of syndiotactic polypropylene and different isotactic polypropylenes were not miscible and some interaction between phases had occurred. Optical microcopy (OM) and scanning electronic microscopy (SEM) were used to study the morphological properties of different isotactic polypropylenes. Results revealed a welldefined and large spherulitic morphology of mixed a1 (disordered) and a2 (ordered) crystal form structures. OM and SEM images also clearly showed an effect of molecular weight and tacticity on the crystal structure of the different polypropylene samples. Finally, various homopolymers and blends were studied to investigate the effect of molecular weight on the mechanical properties of these materials. This was done using microhardness testing and dynamic mechanical analysis.
AFRIKAANSE OPSOMMING: Die kristallisasie van poliolefiene is ‘n belangrike faktor wat die eienskappe van hierdie tipe materiale bepaal. In die algemeen hang kristallisasie af van die molekulêre simmetrie (taktisiteit) en molekulêre massa van die materiaal. ‘n Reeks polipropilene is berei deur gebruik te maak van heterogene MgCl2-ondersteunde Ziegler-kataliste met twee verskillende elektron donors, difenieldimetoksisilaan (DPDMS) en metielfenieldimetoksisilaan (MPDMS), en twee verskillende homogene metalloseenkataliste, rac-etileen-bis(indeniel) sirkoniumdichloried, Et(Ind)2ZrCl2 (EI), en rac-etileen-bis(4,5,6,7-tetrahidro-1-indeniel) sirkoniumdichloried, Et(H4Ind)2ZrCl2 (EI(4H)). Molekulêre waterstof is gebruik as termineringssagent. Ten einde ‘n verband te bepaal tussen die molekulêre massa en kristallisasie van hierdie polimere is hulle gefraksioneer op die basis van hulle kristallisseerbaarheid deur gebruik te maak van temperatuurstyging-elueringsfraksionering (TREF). Deur hierdie tegniek verkry ons materiale van verskillende molekulêre massa maar met dieselfde taktisiteit wat ons kan vermeng. Verskeie tegnieke is gebruik om hierdie materiale te karakteriseer: differensiële skandeerkalorometrie (DSC), wyehoek X-straal diffraksie (WAXS), 13C-kernmagnetiese resonansspektroskopie (13C-KMR), hoë-temperatuur gelpermeasiechromotagrafie (HT-GPC) en Fourier-transform-infrarooispektroskopie (FT-IR). DSC is gebruik om die vaste-toestand kristallisasie van verskeie vermengde polipropilene te bestudeer., en net een smeltpunt is in meeste gevalle waargeneem. Laasgenoemde word gewoonlik verbind met ‘n hoë mate van kokristallisasie. Oplossingkristallisasie analise, dmv laserligverstrooiing (SCALLS), is gebruik om die turbiditeit van die verskillende polipropileen kopolimeervermengings te bepaal. Goeie inligting aangaande die kristallisasie in oplossing – soortgelyk aan dié wat dmv die kristallisasie-analise-fraksioneringstegniek (CRYSTAF) en TREF bepaal is, is verkry. Dit was ook moontlik om te onderskei tussen polipropilene met soortgelyke chemiese strukture maar verskillende taktisiteit en molekulêre massas. SCALLS data het ook getoon dat die vermengings van verskeie isotaktiese polipropileen polimere versoenbaar was en dat kokristallisasie plaasgevind het, terwyl vermengings van sindiotaktiese polipropileen en verskeie isotaktiese polipropilene nie versoenbaar was nie en dat ‘n mate van fase-skeiding plaasgevind het. Optiese mikroskopie (OM) en skandeer-elektronmikroskopie (SEM) is gebruik om die morfologiese eienskappe van verskillende isotaktiese polipropilene te bepaal. Goed gedefineerde en groot sferulitiese morfologie van gemengde a1 (onordelike struktuur) en a2 (ordelike struktuur) kristal-strukture is waargeneem. OM en SEM beelde het ook gewys dat molekulêre massa en taktisiteit ‘n effek het op die kristalstruktuur van die verskillende polipropileenmonsters. Laastens is die meganiese eienskappe van ‘n verskeidenheid homopolimere en vermengde materiale bestudeer, deur gebruik te maak van mikro-hardheid metings en dinamiesmeganiese analise (DMA).
Forde, Janice. "The molecular biology of the high molecular weight glutenin subunits of wheat". Thesis, Rothamsted Research, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.352836.
Texto completoLibros sobre el tema "Molecular weight"
Barrowcliffe, Trevor W. Low molecular weight heparin. Chichester, West Sussex, England: Wiley, 1992.
Buscar texto completoR, Cooper Anthony, ed. Determination of molecular weight. New York: J. Wiley, 1989.
Buscar texto completoKampen, Thorsten U. Low Molecular Weight Organic Semiconductors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629978.
Texto completoBäckvall, Helena y Janne Lehtiö, eds. The Low Molecular Weight Proteome. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7209-4.
Texto completoThromoprophylaxis with low-molecular-weight heparins. London: Current Medicine Group, 2006.
Buscar texto completoNightingale, Philip D. Low molecular weight halocarbons in seawater. Norwich: University of East Anglia, 1991.
Buscar texto completoHyers, Thomas M. Treatment handbook of low-molecular-weight heparin. London: Science Press, 2000.
Buscar texto completoCenter, Langley Research, ed. Effect of molecular weight on polyphenylquinoxaline properties. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Buscar texto completoChristian, Doutremepuich, ed. Low molecular weight heparins in clinical practice. New York: Dekker, 1992.
Buscar texto completoZhu, Yibo. Two-dimensional material-based nanosensors for detection of low-molecular-weight molecules. [New York, N.Y.?]: [publisher not identified], 2018.
Buscar texto completoCapítulos de libros sobre el tema "Molecular weight"
Cernicharo, Jose. "Molecular Weight". En Encyclopedia of Astrobiology, 1080. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1020.
Texto completoQuintanilla, José Cernicharo. "Molecular Weight". En Encyclopedia of Astrobiology, 1613. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1020.
Texto completoGooch, Jan W. "Molecular Weight". En Encyclopedic Dictionary of Polymers, 471. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7647.
Texto completoCrompton, T. R. "Molecular Weight". En Practical Polymer Analysis, 304–21. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2874-6_8.
Texto completoQuintanilla, José Cernicharo. "Molecular Weight". En Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1020-3.
Texto completoQuintanilla, José Cernicharo. "Molecular Weight". En Encyclopedia of Astrobiology, 1998. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1020.
Texto completoQuintanilla, José Cernicharo. "Molecular Weight". En Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_1020-4.
Texto completoMishra, Munmaya y Biao Duan. "Molecular Weight". En The Essential Handbook of Polymer Terms and Attributes, 111–12. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-109.
Texto completoGooch, Jan W. "Weight-Average Molecular Weight". En Encyclopedic Dictionary of Polymers, 808. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12767.
Texto completoGooch, Jan W. "Weight-Average Molecular Weight". En Encyclopedic Dictionary of Polymers, 808. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12768.
Texto completoActas de conferencias sobre el tema "Molecular weight"
Zampini, Anthony, Pamela Turci, George J. Cernigliaro, Harold F. Sandford, Gary J. Swanson, Catherine C. Meister y Roger F. Sinta. "High-resolution positive photoresists: novolac molecular weight and molecular weight distribution effects". En Microlithography '90, 4-9 Mar, San Jose, editado por Michael P. C. Watts. SPIE, 1990. http://dx.doi.org/10.1117/12.20105.
Texto completoHamblin, Mark J., Yee Chan-Li, Samuel L. Collins, Robert W. Hallowell y Maureen R. Horton. "Low Molecular Weight Statin Derivatives Inhibit Low Molecular Weight Hyaluronan Induced Inflammatory Signals". En American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2855.
Texto completoWei, Fang, Erick Acosta, Kiran Gawas y Pushkala Krishnamurthy. "Targeting High Molecular Weight Wax". En SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/173775-ms.
Texto completoDavied, S., Y. F. Nicolau, F. Melis y A. Revillon. "Molecular weight determinaiton of polyaniline". En International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835410.
Texto completoKabanemi, Kalonji K., Jean-Franc¸ois He´tu y Samira H. Sammoun. "Experimental Study on Flow-Front Fingering Instabilities in Injection Molding of Polymer Solutions and Melts". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59078.
Texto completoXianhong Wang, Lixiang Wang, Xiabin Jing y Fosong Wang. "Molecular weight and properties of polyaniline". En International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835362.
Texto completoPanin, S. V., L. A. Kornienko, T. Nguen Suan, L. P. Ivanova, M. A. Korchagin, M. V. Chaikina, S. V. Shilko y Yu M. Pleskachevskiy. "Biocompatible composites of ultrahigh molecular weight polyethylene". En ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932864.
Texto completoYamaguchi, Toru, Kenji Yamazaki y Hideo Namatsu. "Molecular weight effect on line-edge roughness". En Microlithography 2003, editado por Theodore H. Fedynyshyn. SPIE, 2003. http://dx.doi.org/10.1117/12.485049.
Texto completoStloukal, Petr, Marek Koutny, Vladimir Sedlarik y Pavel Kucharczyk. "Biodegradation of high molecular weight polylactic acid". En 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738385.
Texto completoCizek, Jan, Radek Musalek, Jan Medricky, Tomas Tesar, Frantisek Lukac, Tomas Chraska y Daniel Dukovsky. "Suspension Spraying Tip: High Molecular Weight Solvent". En ITSC2021, editado por F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0548.
Texto completoInformes sobre el tema "Molecular weight"
Guttman, Charles M., John R. Maurey y Peter H. Verdier. Determination of the weight average molecular weight of SRM 1480. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4837.
Texto completoRoberts, Christine Cardinal, Alan Graham, Martin Nemer, Leslie M. Phinney, Robert M. Garcia, Melissa Marie Soehnel y Emily Kate Stirrup. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids. Office of Scientific and Technical Information (OSTI), febrero de 2017. http://dx.doi.org/10.2172/1343365.
Texto completoLong, Treva y Ferdinand Rodriguez. Dissolution of Poly(p-hydroxystyrene): Molecular Weight Effects. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1991. http://dx.doi.org/10.21236/ada232155.
Texto completoDeSimone, Joseph y Douglas Kiserow. Synthesis of High Molecular Weight Polycarbonates Using Supercritical CO2. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2001. http://dx.doi.org/10.21236/ada392832.
Texto completoTernan, M., P. Rahimi, D. Liu y D. M. Clugston. Coprocessing: elemental and molecular weight distributions in unconverted vacuum residues. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/304596.
Texto completoKelly, Daniel y April Dawn Longhair. XPS and IR Characterization of Ultra-High Molecular Weight Polyethylene. Office of Scientific and Technical Information (OSTI), mayo de 2015. http://dx.doi.org/10.2172/1179842.
Texto completoWick, Charles H. y Patrick E. McCubbin. Filtration Characteristics of MS2 Bacteriophage Using Various Molecular Weight Filters. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1999. http://dx.doi.org/10.21236/ada368535.
Texto completoFang, Hsu-Wei, Stephen M. Hsu y Jan V. Sengers. Ultra-high molecular weight polyethylene wear particle effects on bioactivity. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.sp.1002.
Texto completoZhang, Timothy G., Sikhanda S. Satapathy, Lionel R. Vargas-Gonzalez y Shawn M. Walsh. Modeling Ballistic Response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE). Fort Belvoir, VA: Defense Technical Information Center, julio de 2016. http://dx.doi.org/10.21236/ad1012075.
Texto completoGao, H. Crosslinked, flexible, low-molecular-weight polyacrylamide gels for mobility control. Office of Scientific and Technical Information (OSTI), diciembre de 1989. http://dx.doi.org/10.2172/5405561.
Texto completo