Literatura académica sobre el tema "Molecular qubits"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Molecular qubits".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Molecular qubits"
Yamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi y Takeji Takui. "Adiabatic quantum computing with spin qubits hosted by molecules". Physical Chemistry Chemical Physics 17, n.º 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.
Texto completoCAO, WEN-ZHEN, LI-JIE TIAN, HUI-JUAN JIANG y CHONG LI. "SINGLE QUBIT MANIPULATION IN HETERONUCLEAR DIATOMIC MOLECULAR SYSTEM". International Journal of Quantum Information 06, n.º 06 (diciembre de 2008): 1223–30. http://dx.doi.org/10.1142/s0219749908004390.
Texto completoHastings, Matthew B. y Jeongwan Haah. "Dynamically Generated Logical Qubits". Quantum 5 (19 de octubre de 2021): 564. http://dx.doi.org/10.22331/q-2021-10-19-564.
Texto completoTahan, Charles. "Opinion: Democratizing Spin Qubits". Quantum 5 (18 de noviembre de 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.
Texto completoMani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing". Chemical Physics Reviews 3, n.º 2 (junio de 2022): 021301. http://dx.doi.org/10.1063/5.0084072.
Texto completoXue, Xiao, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci y Lieven M. K. Vandersypen. "Quantum logic with spin qubits crossing the surface code threshold". Nature 601, n.º 7893 (19 de enero de 2022): 343–47. http://dx.doi.org/10.1038/s41586-021-04273-w.
Texto completoGidney, Craig, Michael Newman y Matt McEwen. "Benchmarking the Planar Honeycomb Code". Quantum 6 (21 de septiembre de 2022): 813. http://dx.doi.org/10.22331/q-2022-09-21-813.
Texto completoBravyi, Sergey, Ruslan Shaydulin, Shaohan Hu y Dmitri Maslov. "Clifford Circuit Optimization with Templates and Symbolic Pauli Gates". Quantum 5 (16 de noviembre de 2021): 580. http://dx.doi.org/10.22331/q-2021-11-16-580.
Texto completoBahari, Iskandar, Timothy P. Spiller, Shane Dooley, Anthony Hayes y Francis McCrossan. "Collapse and revival of entanglement between qubits coupled to a spin coherent state". International Journal of Quantum Information 16, n.º 02 (marzo de 2018): 1850017. http://dx.doi.org/10.1142/s021974991850017x.
Texto completoKoiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins y Sankar Das Sarma. "Silicon-based spin and charge quantum computation". Anais da Academia Brasileira de Ciências 77, n.º 2 (junio de 2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.
Texto completoTesis sobre el tema "Molecular qubits"
Plant, Simon Richard. "Molecular engineering with endohedral fullerenes : towards solid-state molecular qubits". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:84f12a03-5b1d-4e04-82d5-5b28ca92e56c.
Texto completoDhungana, Daya Sagar. "Growth of InAs and Bi1-xSBx nanowires on silicon for nanoelectronics and topological qubits by molecular beam epitaxy". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30150/document.
Texto completoInAs and Bi1-xSbx nanowires with their distinct material properites hold promises for nanoelec- tronics and quantum computing. While the high electron mobility of InAs is interesting for na- noelectronics applications, the 3D topological insulator behaviour of Bi1-xSbx can be used for the realization of Majorana Fermions based qubit devices. In both the cases improving the quality of the nanoscale material is mandatory and is the primary goal of the thesis, where we study CMOS compatible InAs nanowire integration on Silicon and where we develop a new nanoscale topological insulator. For a full CMOS compatiblity, the growth of InAs on Silicon requires to be self-catalyzed, fully vertical and uniform without crossing the thermal budge of 450 °C. These CMOS standards, combined with the high lattice mismatch of InAs with Silicon, prevented the integration of InAs nanowires for nanoelectronics devices. In this thesis, two new surface preparations of the Silicon were studied involving in-situ Hydrogen gas and in-situ Hydrogen plasma treatments and leading to the growth of fully vertical and self-catalyzed InAs nanowires compatible with the CMOS limitations. The different growth mechanisms resulting from these surface preparations are discussed in detail and a switch from Vapor-Solid (VS) to Vapor- Liquid-Solid (VLS) mechanism is reported. Very high aspect ratio InAs nanowires are obtained in VLS condition: upto 50 nm in diameter and 3 microns in length. On the other hand, Bi1-xSbx is the first experimentally confirmed 3D topololgical insulator. In this new material, the presence of robust 2D conducting states, surrounding the 3D insulating bulk can be engineered to host Majorana fermions used as Qubits. However, the compostion of Bi1-xSbx should be in the range of 0.08 to 0.24 for the material to behave as a topological insula- tor. We report growth of defect free and composition controlled Bi1-xSbx nanowires on Si for the first time. Different nanoscale morphologies are obtained including nanowires, nanoribbons and nanoflakes. Their diameter can be 20 nm thick for more than 10 microns in length, making them ideal candidates for quantum devices. The key role of the Bi flux, the Sb flux and the growth tem- perature on the density, the composition and the geometry of nanoscale structures is investigated and discussed in detail
Brown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.
Texto completoRolon, Soto Juan Enrique. "Coherent Exciton Phenomena in Quantum Dot Molecules". Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1314742055.
Texto completoAmoza, Dávila Martín. "Anisotropía Magnética en Imanes Moleculares y Qubits con Complejos Metálicos de Espín ½". Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667860.
Texto completoThis thesis presents a series of theoretical studies based on electronic structure methods to analyze the magnetic anisotropy and other related properties of magnetic complexes with total spin S = ½. The first three chapters are devoted to transition metal complexes while the fourth one addresses lanthanides systems, specifically YbIII. The first chapter determines a relationship between the d orbitals occupation and the coordination geometry of S = ½ transition metal complexes with their magnetic anisotropy, through its g-tensor. This connection is possible due to the relationship between the g-tensor and the splitting of the d manyfold. These energies were obtained using NEVPT2/AILFT calculation on [MIILn] models, screening for different MII metals, coordination numbers (n) and geometries, and ligand nature (L = NH3 or Cl-). The second chapter is a study carried out in collaboration with Dr. Gaita Ariño’s group from the molecular Science Institute of Valencia (ICMol) analyzing the spin-phonon coupling in three VIV qubits: [VOPc], [VO(dmit)2]2- y [V(dmit)3]2-, being Pc = Phthalocyanine and dmit = 1,3-dithiole-2-thione-4,5-dithiolate. In order to analyze the spin-phonon coupling we examined the variation of the magnetic anisotropy using NEVPT2/AILFT calculations for each vibrational mode. The spin-phonon coupling constants obtained for the vibrational modes in the three complexes were used to rationalize their different decoherence times. The third chapter, the last one dedicated to transition metal complexes, compiles a series of collaborations with experimental groups. In these studies, using the same methods as in the previous chapters, we analyzed the electronic structure and magnetic properties of the compounds, explaining experimental results through theoretical calculations. Also, we fitted the spin relaxation times considering the all possible spin relaxation mechanisms. Finally, the fourth chapter explores the magnetic anisotropy and electronic structure of YbIII compounds on the basis of theoretical calculations in a series of [Yb(H2O)n]3+ y [Yb(OH)3(H2O)n-3] model using ideal geometries corresponding to coordination numbers between 2 and 10. These calculations explain the properties of the YbIII single-molecule
Hakimi, Shirin. "Theory and Modeling of Electrical Control of Chiral Qubit in Spin-Frustrated Molecular Triangle". Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84587.
Texto completoTuorila, J. (Jani). "Spectroscopy of artificial atoms and molecules". Doctoral thesis, Oulun yliopisto, 2010. http://urn.fi/urn:isbn:9789514262135.
Texto completoNavickas, Tomas. "Towards high-fidelity microwave driven multi-qubit gates on microfabricated surface ion traps". Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79060/.
Texto completoLeslie, Nathaniel. "Maximal LELM Distinguishability of Qubit and Qutrit Bell States using Projective and Non-Projective Measurements". Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/108.
Texto completoKrajňák, Tomáš. "Depozice velkých organických molekul v UHV". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402579.
Texto completoLibros sobre el tema "Molecular qubits"
Martínez Pérez, María José. μSQUID susceptometry of molecular qubits. Prensas Universitarias de la Universidad de Zaragoza, 2011. http://dx.doi.org/10.26754/uz.978-84-15274-82-7.
Texto completoCapítulos de libros sobre el tema "Molecular qubits"
Santini, Paolo, Stefano Carretta y Giuseppe Amoretti. "Magnetic Molecules as Spin Qubits". En Molecular Magnetic Materials, 103–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694228.ch5.
Texto completoNakazawa, Shigeaki, Shinsuke Nishida, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, Yasushi Morita, Kenji Sugisaki et al. "Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology". En Principles and Methods of Quantum Information Technologies, 605–24. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55756-2_28.
Texto completoAromí, Guillem, Fernando Luis y Olivier Roubeau. "Lanthanide Complexes as Realizations of Qubits and Qugates for Quantum Computing". En Lanthanides and Actinides in Molecular Magnetism, 185–222. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch7.
Texto completoClemente-Juan, Juan M., Eugenio Coronado y Alejandro Gaita-Ariño. "Mononuclear Lanthanide Complexes: Use of the Crystal Field Theory to Design Single-Ion Magnets and Spin Qubits". En Lanthanides and Actinides in Molecular Magnetism, 27–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch2.
Texto completoMur-Petit, J., J. Pérez-Ríos, J. Campos-Martínez, M. I. Hernández, S. Willitsch y J. J. García-Ripoll. "Toward a Molecular Ion Qubit". En Architecture and Design of Molecule Logic Gates and Atom Circuits, 267–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33137-4_20.
Texto completoMoreno-Pineda, Eufemio, Daniel O. T. A. Martins y Floriana Tuna. "Molecules as qubits, qudits and quantum gates". En Electron Paramagnetic Resonance, 146–87. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839162534-00146.
Texto completoBaldoví, J. J., S. Cardona-Serra, A. Gaita-Ariño y E. Coronado. "Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits". En Advances in Inorganic Chemistry, 213–49. Elsevier, 2017. http://dx.doi.org/10.1016/bs.adioch.2016.12.003.
Texto completoFlarend, Alice y Bob Hilborn. "More Quantum Algorithms". En Quantum Computing: From Alice to Bob, 182–212. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192857972.003.0012.
Texto completoVallone, Giuseppe y Paolo Mataloni. "Generation and Applications of n-Qubit Hyperentangled Photon States". En Advances In Atomic, Molecular, and Optical Physics, 291–314. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-385508-4.00006-1.
Texto completoRau, Jochen. "Computation". En Quantum Theory, 168–222. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192896308.003.0004.
Texto completoActas de conferencias sobre el tema "Molecular qubits"
Goswami, Debabrata, Tapas Goswami, S. K. Karthick Kumar, Dipak K. Das, Dipankar Home, Guruprasad Kar y Archan S. Majumda. "Towards Using Molecular States as Qubits". En 75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS: S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium. AIP, 2011. http://dx.doi.org/10.1063/1.3635869.
Texto completoNISKANEN, ANTTI O. "FLUX QUBITS, TUNABLE COUPLING AND BEYOND". En Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0002.
Texto completoSILLANPÄÄ, MIKA A. "JOSEPHSON PHASE QUBITS, AND QUANTUM COMMUNICATION VIA A RESONANT CAVITY". En Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0003.
Texto completoSato, Kazuo, Shigeki Nakazawa, Robabeh D. Rahimi, Shinsuke Nishida, Tomoaki Ise, Daisuke Shimoi, Kazuo Toyota et al. "QUANTUM COMPUTING USING PULSE-BASED ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR): MOLECULAR SPIN-QUBITS". En Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0004.
Texto completoBashkirov, Eugene K. "Entanglement between two qubits with two-photon transitions interacting with a slightly detuned thermal field". En Laser Physics, Photonic Technologies, and Molecular Modeling, editado por Vladimir L. Derbov. SPIE, 2021. http://dx.doi.org/10.1117/12.2588674.
Texto completoAlbert, Victor V., Jacob P. Covey y John Preskill. "Encoding a qubit in a molecule". En Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.m5a.11.
Texto completoIde, Toshiki. "CONTINUOUS–VARIABLE TELEPORTATION OF SINGLE–PHOTON STATES AND AN ACCIDENTAL CLONING OF A PHOTONIC QUBIT IN TWO–CHANNEL TELEPORTATION". En Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0009.
Texto completoDas, S., S. Faez y A. S. Sørensen. "Quantum information with optical photons in hybrid molecule-superconducting qubit system". En SPIE Photonics Europe, editado por Benjamin J. Eggleton, Alexander L. Gaeta, Neil G. R. Broderick, Alexander V. Sergienko, Arno Rauschenbeutel y Thomas Durt. SPIE, 2014. http://dx.doi.org/10.1117/12.2057790.
Texto completoWang, H. y G. Iyanu. "Prospects of Creating Qubit with Ultracold RbCs Molecules in Lowest Quantum States". En Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/cqo.2007.csua11.
Texto completoChow, Colin, Zhexuan Gong, Luming Duan y Duncan G. Steel. "Proposal for a Universal Two-Qubit Quantum Gate in Self-Assembled InAs/GaAs Quantum Dot Molecules with Intensity-Modulated CW Laser". En Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lth1g.1.
Texto completo