Artículos de revistas sobre el tema "Molecular qubit"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Molecular qubit".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
CAO, WEN-ZHEN, LI-JIE TIAN, HUI-JUAN JIANG, and CHONG LI. "SINGLE QUBIT MANIPULATION IN HETERONUCLEAR DIATOMIC MOLECULAR SYSTEM." International Journal of Quantum Information 06, no. 06 (2008): 1223–30. http://dx.doi.org/10.1142/s0219749908004390.
Texto completoGidney, Craig, Michael Newman, and Matt McEwen. "Benchmarking the Planar Honeycomb Code." Quantum 6 (September 21, 2022): 813. http://dx.doi.org/10.22331/q-2022-09-21-813.
Texto completoXue, Xiao, Maximilian Russ, Nodar Samkharadze, et al. "Quantum logic with spin qubits crossing the surface code threshold." Nature 601, no. 7893 (2022): 343–47. http://dx.doi.org/10.1038/s41586-021-04273-w.
Texto completoYirka, Justin, and Yiğit Subaşı. "Qubit-efficient entanglement spectroscopy using qubit resets." Quantum 5 (September 2, 2021): 535. http://dx.doi.org/10.22331/q-2021-09-02-535.
Texto completoYamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, et al. "Adiabatic quantum computing with spin qubits hosted by molecules." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.
Texto completoMoreno-Pineda, Eufemio, Clément Godfrin, Franck Balestro, Wolfgang Wernsdorfer, and Mario Ruben. "Molecular spin qudits for quantum algorithms." Chemical Society Reviews 47, no. 2 (2018): 501–13. http://dx.doi.org/10.1039/c5cs00933b.
Texto completoTahan, Charles. "Opinion: Democratizing Spin Qubits." Quantum 5 (November 18, 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.
Texto completoJohnson, Alexander I., Fhokrul Islam, C. M. Canali, and Mark R. Pederson. "A multiferroic molecular magnetic qubit." Journal of Chemical Physics 151, no. 17 (2019): 174105. http://dx.doi.org/10.1063/1.5127956.
Texto completoLao, Lingling, Alexander Korotkov, Zhang Jiang, Wojciech Mruczkiewicz, Thomas E. O'Brien, and Dan E. Browne. "Software mitigation of coherent two-qubit gate errors." Quantum Science and Technology 7, no. 2 (2022): 025021. http://dx.doi.org/10.1088/2058-9565/ac57f1.
Texto completoAbu-Nada, Ali. "Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources." Open Physics 19, no. 1 (2021): 628–33. http://dx.doi.org/10.1515/phys-2021-0071.
Texto completoSimoni, Mario, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia Graziano, and Maurizio Zamboni. "Towards Compact Modeling of Noisy Quantum Computers: A Molecular-Spin-Qubit Case of Study." ACM Journal on Emerging Technologies in Computing Systems 18, no. 1 (2022): 1–26. http://dx.doi.org/10.1145/3474223.
Texto completoChernega, Vladimir N., and Vladimir I. Man’ko. "Qubit portrait of qudit states and Bell inequalities." Journal of Russian Laser Research 28, no. 2 (2007): 103–24. http://dx.doi.org/10.1007/s10946-007-0005-8.
Texto completoGroszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Texto completoHoriuchi, Noriaki. "Flying qubit carrying a spin qubit." Nature Photonics 7, no. 4 (2013): 336. http://dx.doi.org/10.1038/nphoton.2013.78.
Texto completoDrahi, David, Demid V. Sychev, Khurram K. Pirov, et al. "Entangled resource for interfacing single- and dual-rail optical qubits." Quantum 5 (March 23, 2021): 416. http://dx.doi.org/10.22331/q-2021-03-23-416.
Texto completoPaini, Marco, Amir Kalev, Dan Padilha, and Brendan Ruck. "Estimating expectation values using approximate quantum states." Quantum 5 (March 16, 2021): 413. http://dx.doi.org/10.22331/q-2021-03-16-413.
Texto completoLabib, Farrokh. "Stabilizer rank and higher-order Fourier analysis." Quantum 6 (February 9, 2022): 645. http://dx.doi.org/10.22331/q-2022-02-09-645.
Texto completoHastings, Matthew B., and Jeongwan Haah. "Dynamically Generated Logical Qubits." Quantum 5 (October 19, 2021): 564. http://dx.doi.org/10.22331/q-2021-10-19-564.
Texto completoBravyi, Sergey, Ruslan Shaydulin, Shaohan Hu, and Dmitri Maslov. "Clifford Circuit Optimization with Templates and Symbolic Pauli Gates." Quantum 5 (November 16, 2021): 580. http://dx.doi.org/10.22331/q-2021-11-16-580.
Texto completoMcKemmish, Laura K., David J. Kedziora, Graham R. White, Noel S. Hush, and Jeffrey R. Reimers. "Frequency-based Quantum Computers from a Chemist's Perspective." Australian Journal of Chemistry 65, no. 5 (2012): 512. http://dx.doi.org/10.1071/ch12053.
Texto completoPal, Amit Kumar, and Indrani Bose. "Entanglement in a molecular three-qubit system." Journal of Physics: Condensed Matter 22, no. 1 (2009): 016004. http://dx.doi.org/10.1088/0953-8984/22/1/016004.
Texto completoPicó-Cortés, Jordi, and Gloria Platero. "Dynamical second-order noise sweetspots in resonantly driven spin qubits." Quantum 5 (December 23, 2021): 607. http://dx.doi.org/10.22331/q-2021-12-23-607.
Texto completoPlachta, Stephen Z. D., Markus Hiekkamäki, Abuzer Yakaryılmaz, and Robert Fickler. "Quantum advantage using high-dimensional twisted photons as quantum finite automata." Quantum 6 (June 30, 2022): 752. http://dx.doi.org/10.22331/q-2022-06-30-752.
Texto completoHussain, Riaz, Giuseppe Allodi, Alessandro Chiesa, et al. "Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit." Journal of the American Chemical Society 140, no. 31 (2018): 9814–18. http://dx.doi.org/10.1021/jacs.8b05934.
Texto completoMusfeldt, Janice L., Zhenxian Liu, Diego López-Alcalá, et al. "Vibronic Relaxation Pathways in Molecular Spin Qubit Na9[Ho(W5O18)2]·35H2O under Pressure." Magnetochemistry 9, no. 2 (2023): 53. http://dx.doi.org/10.3390/magnetochemistry9020053.
Texto completoKoiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins, and Sankar Das Sarma. "Silicon-based spin and charge quantum computation." Anais da Academia Brasileira de Ciências 77, no. 2 (2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.
Texto completoAltintas, Azmi Ali, Fatih Ozaydin, Cihan Bayindir, and Veysel Bayrakci. "Prisoners’ Dilemma in a Spatially Separated System Based on Spin–Photon Interactions." Photonics 9, no. 9 (2022): 617. http://dx.doi.org/10.3390/photonics9090617.
Texto completoHilaire, Paul, Edwin Barnes, and Sophia E. Economou. "Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits." Quantum 5 (February 15, 2021): 397. http://dx.doi.org/10.22331/q-2021-02-15-397.
Texto completoSabín, Carlos. "Digital Quantum Simulation of Linear and Nonlinear Optical Elements." Quantum Reports 2, no. 1 (2020): 208–20. http://dx.doi.org/10.3390/quantum2010013.
Texto completoGrzesiak, Nikodem, Andrii Maksymov, Pradeep Niroula, and Yunseong Nam. "Efficient quantum programming using EASE gates on a trapped-ion quantum computer." Quantum 6 (January 27, 2022): 634. http://dx.doi.org/10.22331/q-2022-01-27-634.
Texto completoLowe, Angus, Matija Medvidović, Anthony Hayes, et al. "Fast quantum circuit cutting with randomized measurements." Quantum 7 (March 2, 2023): 934. http://dx.doi.org/10.22331/q-2023-03-02-934.
Texto completoUllah, Aman, José J. Baldoví, Alejandro Gaita-Ariño, and Eugenio Coronado. "Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets." Dalton Transactions 50, no. 32 (2021): 11071–76. http://dx.doi.org/10.1039/d1dt01832a.
Texto completoJing-Min, Hou, Tian Li-Jun, and Ge Mo-Lin. "Two-Qubit Quantum Logic Gate in Molecular Magnets." Chinese Physics Letters 22, no. 9 (2005): 2147–50. http://dx.doi.org/10.1088/0256-307x/22/9/002.
Texto completoPorfyrakis, Kyriakos. "(Invited) N@C60 and N@C70 for Quantum Information Processing: Beyond Qubits." ECS Meeting Abstracts MA2022-01, no. 11 (2022): 817. http://dx.doi.org/10.1149/ma2022-0111817mtgabs.
Texto completoHuerga, Daniel. "Variational Quantum Simulation of Valence-Bond Solids." Quantum 6 (December 13, 2022): 874. http://dx.doi.org/10.22331/q-2022-12-13-874.
Texto completoIssah, Ibrahim, Mohsin Habib, and Humeyra Caglayan. "Long-range qubit entanglement via rolled-up zero-index waveguide." Nanophotonics 10, no. 18 (2021): 4579–89. http://dx.doi.org/10.1515/nanoph-2021-0453.
Texto completoMani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing." Chemical Physics Reviews 3, no. 2 (2022): 021301. http://dx.doi.org/10.1063/5.0084072.
Texto completoWang, Qingfeng, Ming Li, Christopher Monroe, and Yunseong Nam. "Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry." Quantum 5 (July 26, 2021): 509. http://dx.doi.org/10.22331/q-2021-07-26-509.
Texto completoYousefjani, Rozhin, and Abolfazl Bayat. "Parallel entangling gate operations and two-way quantum communication in spin chains." Quantum 5 (May 26, 2021): 460. http://dx.doi.org/10.22331/q-2021-05-26-460.
Texto completoArdavan, Arzhang, Alice M. Bowen, Antonio Fernandez, et al. "Engineering coherent interactions in molecular nanomagnet dimers." npj Quantum Information 1, no. 1 (2015). http://dx.doi.org/10.1038/npjqi.2015.12.
Texto completoVepsäläinen, Antti, Roni Winik, Amir H. Karamlou, et al. "Improving qubit coherence using closed-loop feedback." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-29287-4.
Texto completoNoiri, Akito, Kenta Takeda, Takashi Nakajima, et al. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-33453-z.
Texto completoLandig, A. J., J. V. Koski, P. Scarlino, et al. "Virtual-photon-mediated spin-qubit–transmon coupling." Nature Communications 10, no. 1 (2019). http://dx.doi.org/10.1038/s41467-019-13000-z.
Texto completoChicco, Simone, Alessandro Chiesa, Giuseppe Allodi, et al. "Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear qudit with an electronic ancilla." Chemical Science, 2021. http://dx.doi.org/10.1039/d1sc01358k.
Texto completoJurcevic, Petar, and Luke C. G. Govia. "Effective qubit dephasing induced by spectator-qubit relaxation." Quantum Science and Technology, August 25, 2022. http://dx.doi.org/10.1088/2058-9565/ac8cad.
Texto completoYoneda, J., W. Huang, M. Feng, et al. "Coherent spin qubit transport in silicon." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24371-7.
Texto completoHyyppä, Eric, Suman Kundu, Chun Fai Chan, et al. "Unimon qubit." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-34614-w.
Texto completoPlace, Alexander P. M., Lila V. H. Rodgers, Pranav Mundada, et al. "New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22030-5.
Texto completoErhard, Alexander, Joel J. Wallman, Lukas Postler, et al. "Characterizing large-scale quantum computers via cycle benchmarking." Nature Communications 10, no. 1 (2019). http://dx.doi.org/10.1038/s41467-019-13068-7.
Texto completoTsai, Jeng-Yuan, Jinbo Pan, Hsin Lin, Arun Bansil, and Qimin Yan. "Antisite defect qubits in monolayer transition metal dichalcogenides." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-28133-x.
Texto completo