Tesis sobre el tema "Molecular qubit"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 17 mejores tesis para su investigación sobre el tema "Molecular qubit".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hakimi, Shirin. "Theory and Modeling of Electrical Control of Chiral Qubit in Spin-Frustrated Molecular Triangle". Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84587.
Texto completoNavickas, Tomas. "Towards high-fidelity microwave driven multi-qubit gates on microfabricated surface ion traps". Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79060/.
Texto completoLeslie, Nathaniel. "Maximal LELM Distinguishability of Qubit and Qutrit Bell States using Projective and Non-Projective Measurements". Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/108.
Texto completoPlant, Simon Richard. "Molecular engineering with endohedral fullerenes : towards solid-state molecular qubits". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:84f12a03-5b1d-4e04-82d5-5b28ca92e56c.
Texto completoBrown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.
Texto completoGodfrin, Clément. "Quantum information processing using a molecular magnet single nuclear spin qudit". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY015/document.
Texto completoThe application of quantum physics to the information theory turns out to be full of promises for our information society. Aware of this potential, groups of scientists all around the world have this common goal to create the quantum version of the computer. The first step of this ambitious project is the realization of the basic block that encodes the quantum information, the qubit. Among all existing qubits, spin based devices are very attractive since they reveal electrical read-out and coherent manipulation. Beyond this, the more isolated a system is, the longer its quantum behaviour remains, making of the nuclear spin a serious candidate for exhibiting long coherence time and consequently high numbers of quantum operation.In this context I worked on a molecular spin transistor consisting of a TbPc2 singlemolecule magnet coupled to electrodes (source, drain and gate) and a microwave antenna. This setup enabled us to read-out electrically both the electronic and the nuclear spin states and to coherently manipulate the nuclear spin of the Terbium ion. I focus during my Ph.D. on the study of the spins dynamic and mainly the 3/2 nuclear spin under the influence of a microwave pulse. The first step was to measure the energy difference between these statesleading in a second time to the coherent manipulation of the three nuclear spin transitions using only a microwave electric field. To further characterize the decoherence processes that break the phase of the nuclear spin states, I performed Ramsey and Hahn-echo measurements. These preliminary results show that we were in presence of three qubits with figure of merit higher than two thousands, thus meeting the expectations aroused by the use of a nuclearspin as the basic block of quantum information.More than demonstrating the qubit dynamic, I demonstrated that a nuclear spin embedded in the molecular magnet transistor is a four quantum states system that can be fully controlled, a qudit. Theoretical proposal demonstrated that quantum information processing such as quantum gates and algorithms could be implemented using a 3/2 spin. I focused on a research algorithm which is a succession of an Hadamard gate, that creates a coherent superposition of all the nuclear spin sates, and an unitary evolution, that amplified the amplitude of a desired state. It allows a quadratic speed-up to find an element in an unordered list compared to classical algorithm. During my Ph.D., I demonstrated the experimental proof of feasibility of this Grover like algorithm applied to a multi-levels system. The first step was to experimentally create coherent superposition of 2, 3 and 4 states. Then I measured coherent oscillations inbetween a 3 state superposition and a selected state which is the signature of the research algorithm implementation.In summary, this Ph.D. exposed the first quantum search algorithm on a single-molecule magnet based qudit. These results combined to the great versatility of molecular magnet holds a lot of promises for the next challenge: building up a scalable molecular based quantum computer
Krajňák, Tomáš. "Depozice velkých organických molekul v UHV". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402579.
Texto completoAmoza, Dávila Martín. "Anisotropía Magnética en Imanes Moleculares y Qubits con Complejos Metálicos de Espín ½". Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667860.
Texto completoThis thesis presents a series of theoretical studies based on electronic structure methods to analyze the magnetic anisotropy and other related properties of magnetic complexes with total spin S = ½. The first three chapters are devoted to transition metal complexes while the fourth one addresses lanthanides systems, specifically YbIII. The first chapter determines a relationship between the d orbitals occupation and the coordination geometry of S = ½ transition metal complexes with their magnetic anisotropy, through its g-tensor. This connection is possible due to the relationship between the g-tensor and the splitting of the d manyfold. These energies were obtained using NEVPT2/AILFT calculation on [MIILn] models, screening for different MII metals, coordination numbers (n) and geometries, and ligand nature (L = NH3 or Cl-). The second chapter is a study carried out in collaboration with Dr. Gaita Ariño’s group from the molecular Science Institute of Valencia (ICMol) analyzing the spin-phonon coupling in three VIV qubits: [VOPc], [VO(dmit)2]2- y [V(dmit)3]2-, being Pc = Phthalocyanine and dmit = 1,3-dithiole-2-thione-4,5-dithiolate. In order to analyze the spin-phonon coupling we examined the variation of the magnetic anisotropy using NEVPT2/AILFT calculations for each vibrational mode. The spin-phonon coupling constants obtained for the vibrational modes in the three complexes were used to rationalize their different decoherence times. The third chapter, the last one dedicated to transition metal complexes, compiles a series of collaborations with experimental groups. In these studies, using the same methods as in the previous chapters, we analyzed the electronic structure and magnetic properties of the compounds, explaining experimental results through theoretical calculations. Also, we fitted the spin relaxation times considering the all possible spin relaxation mechanisms. Finally, the fourth chapter explores the magnetic anisotropy and electronic structure of YbIII compounds on the basis of theoretical calculations in a series of [Yb(H2O)n]3+ y [Yb(OH)3(H2O)n-3] model using ideal geometries corresponding to coordination numbers between 2 and 10. These calculations explain the properties of the YbIII single-molecule
Rolon, Soto Juan Enrique. "Coherent Exciton Phenomena in Quantum Dot Molecules". Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1314742055.
Texto completoDhungana, Daya Sagar. "Growth of InAs and Bi1-xSBx nanowires on silicon for nanoelectronics and topological qubits by molecular beam epitaxy". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30150/document.
Texto completoInAs and Bi1-xSbx nanowires with their distinct material properites hold promises for nanoelec- tronics and quantum computing. While the high electron mobility of InAs is interesting for na- noelectronics applications, the 3D topological insulator behaviour of Bi1-xSbx can be used for the realization of Majorana Fermions based qubit devices. In both the cases improving the quality of the nanoscale material is mandatory and is the primary goal of the thesis, where we study CMOS compatible InAs nanowire integration on Silicon and where we develop a new nanoscale topological insulator. For a full CMOS compatiblity, the growth of InAs on Silicon requires to be self-catalyzed, fully vertical and uniform without crossing the thermal budge of 450 °C. These CMOS standards, combined with the high lattice mismatch of InAs with Silicon, prevented the integration of InAs nanowires for nanoelectronics devices. In this thesis, two new surface preparations of the Silicon were studied involving in-situ Hydrogen gas and in-situ Hydrogen plasma treatments and leading to the growth of fully vertical and self-catalyzed InAs nanowires compatible with the CMOS limitations. The different growth mechanisms resulting from these surface preparations are discussed in detail and a switch from Vapor-Solid (VS) to Vapor- Liquid-Solid (VLS) mechanism is reported. Very high aspect ratio InAs nanowires are obtained in VLS condition: upto 50 nm in diameter and 3 microns in length. On the other hand, Bi1-xSbx is the first experimentally confirmed 3D topololgical insulator. In this new material, the presence of robust 2D conducting states, surrounding the 3D insulating bulk can be engineered to host Majorana fermions used as Qubits. However, the compostion of Bi1-xSbx should be in the range of 0.08 to 0.24 for the material to behave as a topological insula- tor. We report growth of defect free and composition controlled Bi1-xSbx nanowires on Si for the first time. Different nanoscale morphologies are obtained including nanowires, nanoribbons and nanoflakes. Their diameter can be 20 nm thick for more than 10 microns in length, making them ideal candidates for quantum devices. The key role of the Bi flux, the Sb flux and the growth tem- perature on the density, the composition and the geometry of nanoscale structures is investigated and discussed in detail
Tuorila, J. (Jani). "Spectroscopy of artificial atoms and molecules". Doctoral thesis, Oulun yliopisto, 2010. http://urn.fi/urn:isbn:9789514262135.
Texto completoSmith, Kellen. "Adiabatisk genväg till quditberäkning". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447704.
Texto completoBENCI, STEFANO. "Enhancing the performance of potential molecular Qubits: insight into the phonons involved in the spin-lattice relaxation". Doctoral thesis, 2021. http://hdl.handle.net/2158/1234475.
Texto completoCIMATTI, IRENE. "Magnetic molecules on surfaces: assembling Single Molecule Magnets and molecules with long spin coherence". Doctoral thesis, 2017. http://hdl.handle.net/2158/1085620.
Texto completoSantanni, Fabio. "Molecular approaches for the optimization of electron spin-based quantum bits and quantum logic gates". Doctoral thesis, 2022. http://hdl.handle.net/2158/1262928.
Texto completoTesi, Lorenzo. "Multitechnique investigation for rational design of molecular spin qubits". Doctoral thesis, 2019. http://hdl.handle.net/2158/1150777.
Texto completoChang, C. W. y 張哲維. "Study of Control Input/Output Schemes for Qubit in Quantum-Dot-Molecule Registers". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/56864847357905314386.
Texto completo國立高雄應用科技大學
電子與資訊工程研究所碩士班
96
This work presents the theory of exciton coupling to photons and LO phonons in quantum-dot molecules (QDMs). Resonant-round trips of the exciton between the ground (bright) and excited (dark or bright) states, mediated by the LO-phonon, alter the decay time and yield the Rabi oscillation. Novel schemes for a qubit reading/writing in an exciton-based quantum-dot-molecule (QDM) register are proposed. A bit of quantum information is coded into the superposition (molecule) states of the QDM, based on field-controllable combinations of these states. Population-dependent Rabi oscillation in QDMs provides a detectable signature for readout of quantum information that is stored in the register. Moreover, the field-convertibly optical transition rate of the molecule states promises the QDM system to be a field-controlled optical-gain switch or a field-controlled single-photon source.