Literatura académica sobre el tema "Molecular magnetic resonance imaging"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Molecular magnetic resonance imaging".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Molecular magnetic resonance imaging"
Modo, Mike y Steve C. R. Williams. "Molecular Imaging by Magnetic Resonance Imaging". Rivista di Neuroradiologia 16, n.º 2_suppl_part2 (septiembre de 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.
Texto completoSosnovik, David E. "Molecular Imaging in Cardiovascular Magnetic Resonance Imaging". Topics in Magnetic Resonance Imaging 19, n.º 1 (febrero de 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.
Texto completoTerreno, Enzo, Daniela Delli Castelli, Alessandra Viale y Silvio Aime. "Challenges for Molecular Magnetic Resonance Imaging". Chemical Reviews 110, n.º 5 (12 de mayo de 2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.
Texto completoLANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER y S. WICKLINE. "Magnetic resonance molecular imaging with nanoparticles". Journal of Nuclear Cardiology 11, n.º 6 (diciembre de 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.
Texto completoCurtis, R. J. "Magnetic resonance imaging." Annals of the Rheumatic Diseases 50, n.º 1 (1 de enero de 1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.
Texto completoSosnovik, David E., Matthias Nahrendorf y Ralph Weissleder. "Molecular Magnetic Resonance Imaging in Cardiovascular Medicine". Circulation 115, n.º 15 (17 de abril de 2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.
Texto completoPeterson, Eric C. y Louis J. Kim. "Magnetic Resonance Imaging at the Molecular Level". World Neurosurgery 73, n.º 6 (junio de 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.
Texto completoWinter, Patrick M. y Michael D. Taylor. "Magnetic Resonance Molecular Imaging of Plaque Angiogenesis". Current Cardiovascular Imaging Reports 5, n.º 1 (3 de enero de 2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.
Texto completoRothwell, William P. "Nuclear magnetic resonance imaging". Applied Optics 24, n.º 23 (1 de diciembre de 1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.
Texto completoGoldman, M. "Nuclear Magnetic Resonance Imaging". Physica Scripta T19B (1 de enero de 1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.
Texto completoTesis sobre el tema "Molecular magnetic resonance imaging"
Zhu, Bo Ph D. Massachusetts Institute of Technology. "Acoustical-molecular techniques for magnetic resonance imaging". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103499.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references.
Magnetic resonance imaging (MRI) is a remarkably flexible diagnostic platform due to the variety of clinically relevant physical, chemical, and biological phenomena it can detect. In addition to the host of endogenous contrast mechanisms available, MRI functionality can be further extended by incorporating exogenous factors to attain sensitivity to new classes of indicators. Molecular imaging with targeted injectable contrast agents and MR elastography with externally delivered acoustic vibrations are two such advancements with increasing clinical significance. Conventionally employed separately, this work explores how exogenous components can interact cooperatively in imaging disease and may be combined to more accurately stage disease progression and generate novel mechanisms of MR contrast, using contrast agents and acoustic stimulation as model systems. We imaged hepatic fibrosis in a rat model and found that collagen-binding paramagnetic contrast agents and shear wave MR elastography had partially uncorrelated staging abilities, due to the disease condition's differential timing of collagen production and its stiff cross-linking. This complementary feature enabled us to form a composite multivariate model incorporating both methods which exhibited superior diagnostic staging over all stages of fibrosis progression. We then integrated acoustics and molecular-targeting agents at a deeper level in the form of a novel contrast mechanism, Acoustically Induced Rotary Saturation (AIRS), which switches "on" and "off" the image contrast due to the agents by adjusting the resonance of the spin-lock condition. This contrast modulation ability provides unprecedented clarity in identifying contrast agent presence as well as sensitive and quantitative statistical measurements via rapidly modulated block design experiments. Finally, we extend the AIRS method and show preliminary results for Saturation Harmonic Induced Rotary Saturation (SHIRS), which detects the second harmonic time-oscillation of iron oxide nanoparticles' magnetization in response to an oscillating applied field around B0. We also illustrate an exploratory method of selectively imaging iron oxide agents by diffusion kurtosis measures of freely diffusing water in solutions of magnetic nanoparticles.
by Bo Zhu.
Ph. D. in Biomedical Engineering
Zurkiya, Omar. "Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.
Texto completoDuce, Suzanne Louise. "Nuclear magnetic resonance imaging and spectroscopy of food". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.
Texto completoGallagher, F. A. "Molecular imaging of tumours using dynamic nuclear polarization and magnetic resonance imaging". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599277.
Texto completoGAMBINO, GIUSEPPE. "High-relaxivity systems and molecular imaging probes for Magnetic Resonance Imaging applications". Doctoral thesis, Università del Piemonte Orientale, 2014. http://hdl.handle.net/11579/46171.
Texto completoChow, Mei-kwan April y 周美君. "Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44901148.
Texto completoFan, Shujuan y 樊淑娟. "In vivo cellular and molecular magnetic resonance imaging of brain functions and injuries". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50491489.
Texto completoReynolds, Peter Robert. "Magnetic resonance imaging of cellular and molecular events in inflammation". Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487305.
Texto completoLee, Yik-hin y 李易軒. "Molecular and cellular investigation of rodent brains by magnetic resonance imaging". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618118.
Texto completopublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Jugniot, Natacha. "Molecular imaging of serine protease activity-driven pathologies by magnetic resonance". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0141/document.
Texto completoThis work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
Libros sobre el tema "Molecular magnetic resonance imaging"
Awojoyogbe, Bamidele O. y Michael O. Dada. Digital Molecular Magnetic Resonance Imaging. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2.
Texto completoModo, Michel Mathias Jeannot Joseph. y Bulte Jeff W. M, eds. Molecular and cellular MR imaging. Boca Raton: CRC Press, 2007.
Buscar texto completoEdmund, Kim E. y Jackson E. F. 1961-, eds. Molecular imaging in oncology: PET, MRI, and MRS. Berlin: Springer, 1999.
Buscar texto completoDada, Michael O. y Bamidele O. Awojoyogbe. Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0.
Texto completoS, Suri Jasjit, ed. Plaque imaging: Pixel to molecular level. Amsterdam: IOS Press, 2005.
Buscar texto completoPietro, Carretta y Lascialfari Alessandra, eds. NMR-MRI, þSR and Mössbauer spectroscopies in molecular magnets. Milano: Springer, 2007.
Buscar texto completoBerliner, Lawrence J. NMR of Paramagnetic Molecules. Boston, MA: Springer US, 1993.
Buscar texto completoPrasad, Pottumarthi V., ed. Magnetic Resonance Imaging. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1597450103.
Texto completoZuurbier, Ria, Johan Nahuis, Sija Geers-van Gemeren, José Dol-Jansen y Tom Dam, eds. Magnetic Resonance Imaging. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3.
Texto completoSigal, Robert, D. Doyon, Ph Halimi y H. Atlan. Magnetic Resonance Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73037-5.
Texto completoCapítulos de libros sobre el tema "Molecular magnetic resonance imaging"
Botnar, René M., W. Yong Kim, Elmar Spuentrup, Tim Leiner, George Katsimaglis, Michael T. Johnstone, Matthias Stuber y Warren J. Manning. "Magnetic resonance imaging of atherosclerosis: classical and molecular imaging". En Cardiovascular Magnetic Resonance, 243–55. Heidelberg: Steinkopff, 2004. http://dx.doi.org/10.1007/978-3-7985-1932-9_24.
Texto completoBurtea, Carmen, Sophie Laurent, Luce Vander Elst y Robert N. Muller. "Contrast Agents: Magnetic Resonance". En Molecular Imaging I, 135–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_7.
Texto completoSchaeffter, Tobias y Hannes Dahnke. "Magnetic Resonance Imaging and Spectroscopy". En Molecular Imaging I, 75–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_4.
Texto completoNeubauer, Anne Morawski, Patrick Winter, Shelton Caruthers, Gregory Lanza y Samuel A. Wickline. "Magnetic Resonance Molecular Imaging and Targeted Therapeutics". En Cardiovascular Magnetic Resonance Imaging, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-306-6_29.
Texto completoChirizzi, Cristina, Valentina Dichiarante, Pierangelo Metrangolo y Francesca Baldelli Bombelli. "Multibranched Superfluorinated Molecular Probes for 19F MRI". En Fluorine Magnetic Resonance Imaging, 61–82. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003530046-3.
Texto completoJackson, Edward F. "Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy". En Targeted Molecular Imaging in Oncology, 30–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3505-5_4.
Texto completoGauberti, Maxime, Antoine P. Fournier, Denis Vivien y Sara Martinez de Lizarrondo. "Molecular Magnetic Resonance Imaging (mMRI)". En Preclinical MRI, 315–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_19.
Texto completoKluza, Ewelina, Gustav J. Strijkers y Klaas Nicolay. "Multifunctional Magnetic Resonance Imaging Probes". En Molecular Imaging in Oncology, 151–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10853-2_5.
Texto completoBiegger, Philipp, Mark E. Ladd y Dorde Komljenovic. "Multifunctional Magnetic Resonance Imaging Probes". En Molecular Imaging in Oncology, 189–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_6.
Texto completoBoretius, Susann y Jens Frahm. "Manganese-Enhanced Magnetic Resonance Imaging". En Methods in Molecular Biology, 531–68. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-219-9_28.
Texto completoActas de conferencias sobre el tema "Molecular magnetic resonance imaging"
Hengerer, A. "Molecular Magnetic Resonance Imaging". En 2nd International University of Malaya Research Imaging Symposium (UMRIS) 2005: Fundamentals of Molecular Imaging. Kuala Lumpur, Malaysia: Department of Biomedical Imaging, University of Malaya, 2005. http://dx.doi.org/10.2349/biij.1.1.e7-53.
Texto completoBarker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas y Conrad R. Stoldt. "Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.
Texto completoGoyal, Sachin, Can Zhao, Amod Jog, Jerry L. Prince y Aaron Carass. "Improving self super resolution in magnetic resonance images". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor Gimi y Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2295366.
Texto completoLei, Yang, Bing Ji, Tian Liu, Walter J. Curran, Hui Mao y Xiaofeng Yang. "Deep learning-based denoising for magnetic resonance spectroscopy signals". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi y Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580988.
Texto completoChang, Chih-Wei, Matt Goette, Nadja Kadom, Yinan Wang, Jacob Wynne, Tonghe Wang, Tian Liu et al. "Quantification of radiation damage for proton craniospinal irradiation using magnetic resonance imaging". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi y Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2653665.
Texto completoMatheson, Alexander M., Grace Parraga y Ian A. Cunningham. "A linear systems description of multi-compartment pulmonary 129Xe magnetic resonance imaging methods". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi y Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580947.
Texto completoJeong, Jiwoong J., Yang Lei, Karen Xu, Tian Liu, Hyunsuk Shim, Walter J. Curran, Hui-Kuo Shu y Xiaofeng Yang. "Deep learning-based brain tumor bed segmentation for dynamic magnetic resonance perfusion imaging". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi y Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580792.
Texto completoStuker, Florian, Christof Baltes, Katerina Dikaiou, Divya Vats, Lucio Carrara, Edoardo Charbon, Jorge Ripoll y Markus Rudin. "A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging". En Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud1.
Texto completoPereira, Danilo R., Larissa Ganaha, Simone Appenzeller y Leticia Rittner. "Open-source toolbox for analysis and spectra quality control of magnetic resonance spectroscopic imaging". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi y Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2582186.
Texto completoMoreno, Ramon A., Marina F. S. de Sá Rebelo, Talles Carvalho, Antonildes N. Assunção, Roberto N. Dantas, Renata do Val, Angela S. Marin, Adriano Bordignom, Cesar H. Nomura y Marco A. Gutierrez. "A combined deep-learning approach to fully automatic left ventricle segmentation in cardiac magnetic resonance imaging". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor Gimi y Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2512895.
Texto completoInformes sobre el tema "Molecular magnetic resonance imaging"
Bar-Shir, Amnon. Novel molecular architectures for “multicolor” magnetic resonance imaging. The Israel Chemical Society, enero de 2023. http://dx.doi.org/10.51167/ice000017.
Texto completoRussek, Stephen E. Magnetic Resonance Imaging Biomarker Calibration Service:. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.sp.250-100.
Texto completoSchweizer, M. Developments in boron magnetic resonance imaging (MRI). Office of Scientific and Technical Information (OSTI), noviembre de 1995. http://dx.doi.org/10.2172/421332.
Texto completoSchmidt, D. M. y M. A. Espy. Low-field magnetic resonance imaging of gases. Office of Scientific and Technical Information (OSTI), noviembre de 1998. http://dx.doi.org/10.2172/674672.
Texto completoBronskill, Michael J., Paul L. Carson, Steve Einstein, Michael Koshinen, Margit Lassen, Seong Ki Mun, William Pavlicek et al. Site Planning for Magnetic Resonance Imaging Systems. AAPM, 1986. http://dx.doi.org/10.37206/19.
Texto completoBudakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, enero de 2013. http://dx.doi.org/10.21236/ada591583.
Texto completoHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI Knowledge, marzo de 2021. http://dx.doi.org/10.18591/bjuik.0731.
Texto completoHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI knowledge, marzo de 2021. http://dx.doi.org/10.18591/bjuik.0159.v2.
Texto completoSchmidt, D. M., J. S. George, S. I. Penttila y A. Caprihan. Nuclear magnetic resonance imaging with hyper-polarized noble gases. Office of Scientific and Technical Information (OSTI), octubre de 1997. http://dx.doi.org/10.2172/534499.
Texto completoBotto, R. E. y G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), febrero de 1995. http://dx.doi.org/10.2172/26588.
Texto completo