Literatura académica sobre el tema "Molecular hybrid"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Molecular hybrid".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Molecular hybrid"
Kawashima, Etsuko, Yusuke Ohba, Yusuke Terui y Kazuo Kamaike. "Design, Synthesis, and Analysis of Minor Groove Binder Pyrrolepolyamide-2′-Deoxyguanosine Hybrids". Journal of Nucleic Acids 2010 (2010): 1–13. http://dx.doi.org/10.4061/2010/235240.
Texto completoCoronado, Eugenio y José R. Galán-Mascarós. "Hybrid molecular conductors". J. Mater. Chem. 15, n.º 1 (2005): 66–74. http://dx.doi.org/10.1039/b415940n.
Texto completoHeermann, Dieter W., Peter Nielaba y Mauro Rovere. "Hybrid molecular dynamics". Computer Physics Communications 60, n.º 3 (octubre de 1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.
Texto completoŠiško, Metka, Anja Ivanuš y Anton Ivančič. "Determination of Sambucus Interspecific Hybrid Structure using Molecular Markers". Agricultura 16, n.º 1-2 (2019): 1–10. http://dx.doi.org/10.18690/agricultura.16.1-2.1-10.2019.
Texto completoLi, Jianhua, Suzanne Shoup, Jianhua Li y Thomas S. Elias. "Molecular Confirmation of Intergeneric Hybrid ×Chitalpa tashkentensis (Bignoniaceae)". HortScience 41, n.º 5 (agosto de 2006): 1162–64. http://dx.doi.org/10.21273/hortsci.41.5.1162.
Texto completoTognarelli, Giulia, Marco A. L. Zuffi, Silvia Marracci y Matilde Ragghianti. "Surveys on populations of green frogs (Pelophylax) of Western Tuscany sites with molecular and morphometric methods". Amphibia-Reptilia 35, n.º 1 (2014): 99–105. http://dx.doi.org/10.1163/15685381-00002931.
Texto completoLi, X., L. Liu, Y. Gong, Y. Wang, B. Fu, X. Hou, X. Zhu, F. Yu y H. Shen. "Molecular testing of cucumber hybrid genetic purity with RAPD marker". Seed Science and Technology 36, n.º 2 (1 de julio de 2008): 440–46. http://dx.doi.org/10.15258/sst.2008.36.2.17.
Texto completoFreyre, Rosanna y Erin Tripp. "Artificial Hybridization between U.S. Native Ruellia caroliniensis and Invasive Ruellia simplex: Crossability, Morphological Diagnosis, and Molecular Characterization". HortScience 49, n.º 8 (agosto de 2014): 991–96. http://dx.doi.org/10.21273/hortsci.49.8.991.
Texto completoSudha, R., K. Samsudeen, M. K. Rajesh y V. Niral. "Molecular marker assisted confirmation of hybrids in coconut (Cocos nucifera L.)". Indian Journal of Genetics and Plant Breeding (The) 82, n.º 03 (30 de septiembre de 2022): 369–72. http://dx.doi.org/10.31742/isgpb.82.3.15.
Texto completoGambini, JuanPablo. "Theranostic Hybrid Molecular Imaging". World Journal of Nuclear Medicine 13, n.º 2 (2014): 73. http://dx.doi.org/10.4103/1450-1147.139129.
Texto completoTesis sobre el tema "Molecular hybrid"
Cai, Qiong. "Hybrid molecular dynamics simulation". Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/10849.
Texto completoDallas, J. F. "Molecular evolution in a hybrid zone". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373243.
Texto completoBaxter, Carol Anne. "Molecular fragments and the hybrid basis". Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245545.
Texto completoPatti, Alessandro. "Molecular Modeling of Self-Assembling Hybrid Materials". Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/8551.
Texto completoEl presente estudio tiene como principal objetivo estudiar bajo cuales condiciones los sistemas formados por un surfactante, un precursor inorgánico y un solvente, se auto-organizan para dar lugar a estructuras híbridas muy ordenadas. En particular nos proponemos individuar cuales son las características más importantes que los precursores inorgánicos deberían tener para poder observar la formación de materiales mesoporosos ordenados.
Simulaciones Monte Carlo en el colectivo canónico han sido utilizadas para analizar la agregación de los surfactantes en estructuras complejas, como micelas, cilindros organizados en forma hexagonal, o laminas, a partir de configuraciones totalmente desordenadas. Con particular interés hemos analizado el rango de condiciones que llevan a la formación de las estructuras cilíndricas, y estas mismas estructuras han sido comparadas en función de algunas importantes características morfológicas, como el tamaño de poro, el grosor de las paredes, la presencia y accesibilidad de los grupos funcionales en los poros. El modelo usado representa las moléculas de surfactante y de precursor inorgánico como cadenas de segmentos en una red tridimensional que discretiza el espacio en sitios de volumen unitario. Este modelo no entra en el detalle de las características físicas y químicas de las moléculas, pero permite reproducir su agregación en estructuras complejas en un tiempo de cálculo muy razonable. La separación de fase ha sido también evaluada recorriendo a una teoría de campo medio, la quasi-chemical theory, que, aunque no pueda predecir la formación de estructuras ordenadas, ha sido muy útil para confirmar los resultados de las simulaciones, sobretodo cuando no se observa formación de fases ordenadas.
El estudio de surfactantes distintos, uno modelado por una cadena lineal y otro con una cabeza ramificada, nos ha permitido evaluar algunas diferencias estructurales de los materiales obtenidos. La ramificación de la cabeza, que merecería un estudio más profundo del que hemos descrito en este trabajo, ha evidenciado unas interesantes consecuencias en el tamaño de los poros. Este mismo surfactante con cabeza ramificada ha sido elegido para la síntesis de agregados cilíndricos utilizados como templates en la formación, agregación, y condensación de una capa de sílica modelada a través de un modelo atomístico. En particular, hemos aislado uno de los cilindros presentes en los cristales líquidos de estructura hexagonal, y a su alrededor hemos simulado la formación de una capa de sílica utilizando un modelo atomístico. De esta forma, hemos obtenido un poro típico de una estructura mesoporosa más realista, sin necesidad de asumir una forma mas o menos cilíndrica del template, por ser este generado de la auto-agregación del surfactante.
Surfactants are amphiphilic molecules with a solvophilic head and a solvophobic tail. When the surfactant concentration in a given solution is high enough, the molecules aggregate between them to shield the solvophobic part from the contact with the solvent. Such aggregates can show very different sizes and shapes, according to the surfactant and the conditions of the system. The surfactants self-assembly, being due to an energetic and entropic compromise of their molecular structure, is fundamental to observe the formation of very ordered liquid crystals. In the presence of an inorganic precursor and depending on the interactions established between such a precursor and the surfactant, it is possible to synthesize a hybrid material. Hybrid materials are the key step for the formation of periodic ordered mesoporous materials, which can be obtained by eliminating the organic soft matter (the surfactants) from the inorganic framework. Periodic ordered mesoporous materials represent an important family of porous materials as they find a large number of applications in several industrial fields, such as separations, catalysis, sensors, etc. In the last decade, the range of potential applications has increased with the possibility of functionalizing the pore walls by incorporating organic groups during the synthesis, or with post-synthesis treatments.
In this work, we are interested in studying the formation of ordered materials when hybrid organic-inorganic precursors are used. Lattice Monte Carlo simulations in the NVT ensemble have been used to study the equilibrium phase behavior and the synthesis of self-assembling ordered mesoporous materials formed by an organic template with amphiphilic properties and an inorganic precursor in a model solvent. Three classes of inorganic precursors have been modeled: terminal (R-Si-(OEt)3) and bridging ((EtO)3-Si-R-Si-(OEt)3)) organosilica precursors (OSPs), along with pure silica precursors (Si-(OEt)4). Each class has been studied by analyzing its solubility in the solvent and the solvophobicity of the inorganic group.
At high surfactant concentrations, periodic ordered structures, such as hexagonally-ordered cylinders or lamellas, can be obtained depending on the OSPs used. In particular, ordered structures were obtained in a wider range of conditions when bridging hydrophilic OSPs have been used, because a higher surfactant concentration was reached in the phase where the material was formed. Terminal and bridging OSPs produced ordered structures only when the organic group is solvophilic. In this case, a partial solubility between the precursor and the solvent or a lower temperature favored the formation of ordered phases.
With particular interest, we have analyzed the range of conditions leaving to the formation of cylindrical structures, which have been evaluated according to the pore size distribution, the pore wall thickness, the distribution and the accessibility of the functional organic groups around the pores. The phase behavior has been also evaluated by applying the quasi-chemical theory, which cannot predict the formation of ordered structures, but was very useful to confirm the results of simulations, especially when no ordered structures were observed.
The study of the phase and aggregation behavior of two different surfactants, one modeled by a linear chain of head segments and the other modeled by a branched-head, permitted us to evaluate some structural differences of the materials obtained.
Rahimi, Mohammad. "Hybrid Molecular Dynamics – Continuum Mechanics for Polymers". Phd thesis, TU Darmstadt, 2012. https://tuprints.ulb.tu-darmstadt.de/3292/1/Final.pdf.
Texto completoPatel, Chandan. "Hybrid molecular simulations of oxidative complex lesions". Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0835.
Texto completoDNA is continuously exposed to a vast number of damaging events triggered by endogenous and exogenous agents. Numerous experimental studies have provided key information regarding structural properties of some of the DNA lesions and their repair. However, they lack in mechanistic or energetic information pertaining to their formation. Computational Biochemistry has emerged as a powerful tool to understand biochemical reactions and electronic properties of large systems.In this thesis we study the formation of inter- and intra-strand cross-links. These tandem lesions pose a potent threat to genome integrity, because of their high mutagenic frequency. First, we discuss the formation of complex defects which arise from the attack of a pyrimidine radical onto guanine. In comparison with the reactivity of isolated nucleobases, our hybrid Car-Parrinello Molecular Dynamics simulations reveal that the reactivity of hydrogen-abstracted thymine and cytosine is reversed within a B-helix environment. Further, our data also suggest a more severe distortion of the B-helix for G[8-5]C.Second, we rationalize the higher reactivity of cytosine vs. purines toward the multistep formation of inter-strand crosslinks with a C4' oxidized a basic site, which is in qualitative agreement with experiments on isolated nucleobases, using explicit solvent simulations combined to density functional theory
Hall, Katherine Frances. "Hybrid computational methods for modelling molecular excited states". Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501445.
Texto completoTsavalas, John George. "A molecular level investigation of hybrid miniemulsion polymerization". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/11153.
Texto completoBorg, Matthew Karl. "Hybrid molecular-continuum modelling of nano-scale flows". Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=14367.
Texto completoAslan, Gürel Evren. "Hybrid nanostructured materials : from molecular assemblies to photovoltaic devices /". [S.l.] : [s.n.], 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000274977.
Texto completoLibros sobre el tema "Molecular hybrid"
Tchougréeff, Andrei L. Hybrid methods of molecular modeling. [Dordrecht]: Springer, 2008.
Buscar texto completoTchougréeff, Andrei L. Hybrid Methods of Molecular Modeling. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8189-7.
Texto completoSquirrell, Jane. Molecular genetic studies of species, cultivars, and somantic hybrids of rose. London: University of East London, 1998.
Buscar texto completoTchougréeff, Andrei L. Hybrid Methods of Molecular Modeling. Springer, 2010.
Buscar texto completoMoore, John W. y Conrad L. Stanitski. Chemistry: The Molecular Science, Hybrid Edition. Cengage Learning, 2014.
Buscar texto completoLaunay, Jean-Pierre y Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.
Texto completoNakamura, Haruki, Gerard Kleywegt, Stephen K. Burley y John L. Markley. Integrative Structural Biology with Hybrid Methods. Springer, 2019.
Buscar texto completoThorat, Nanasaheb D. y Raghvendra Ashok Bohara. Hybrid Nanostructures for Cancer Theranostics. Elsevier, 2018.
Buscar texto completoThorat, Nanasaheb D. y Raghvendra Ashok Bohara. Hybrid Nanostructures for Cancer Theranostics. Elsevier, 2018.
Buscar texto completoTwo-Hybrid Systems: Methods and Protocols (Methods in Molecular Biology). Humana Press, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Molecular hybrid"
Kushvaha, Saroj Kumar y Kartik Chandra Mondal. "Molecular Hybrid Phosphors". En Hybrid Phosphor Materials, 73–104. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90506-4_3.
Texto completoLivneh, O. y E. Vardi. "Molecular Genetic Markers". En Hybrid Cultivar Development, 201–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-07822-8_8.
Texto completoKaul, M. L. H. "Male Sterility: Molecular Characterization". En Hybrid Cultivar Development, 46–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-07822-8_3.
Texto completoPratama, Satrya Fajri, Azah Kamilah Muda, Yun-Huoy Choo y Ajith Abraham. "Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors". En Hybrid Intelligent Systems, 252–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76351-4_26.
Texto completoTong, Elizabeth y Ghiam Yamin. "Introduction to Molecular Neuroimaging Applications". En Hybrid PET/MR Neuroimaging, 45–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82367-2_6.
Texto completoMcClain, William Martin. "Hybrid orbitals". En Symmetry Theory in Molecular Physics with Mathematica, 521–34. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b13137_41.
Texto completoBecker, Juliane, Sarah M. Schwarzenböck y Bernd J. Krause. "FDG PET Hybrid Imaging". En Molecular Imaging in Oncology, 625–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_19.
Texto completoMaple, Jodi y Simon G. Møller. "Yeast Two-Hybrid Screening". En Methods in Molecular Biology, 207–23. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-257-1_15.
Texto completoShea, K. J., J. Moreau, D. A. Loy, R. J. P. Corriu y B. Boury. "Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials". En Functional Hybrid Materials, 50–85. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch3.
Texto completoten Elshof, Johan E. "Hybrid Materials for Molecular Sieves". En Handbook of Sol-Gel Science and Technology, 1–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19454-7_94-1.
Texto completoActas de conferencias sobre el tema "Molecular hybrid"
Simic-Glavaski, B. "Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules". En Optical and Hybrid Computing, editado por Harold H. Szu. SPIE, 1986. http://dx.doi.org/10.1117/12.964015.
Texto completoCarter, Forrest L. "Molecular Computing And The Chemical Elements Of Logic". En Optical and Hybrid Computing, editado por Harold H. Szu. SPIE, 1986. http://dx.doi.org/10.1117/12.964014.
Texto completoPalomares, Emilio. "Molecular Approaches to Energy Conversion". En International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.158.
Texto completoLlobet, Antoni. "Hybrid molecular photoanodes for water splitting". En 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.191.
Texto completoNelson, Jenny. "Luminescence and molecular modelling as tools to probe structure-property-performance relationships at molecular heterojunctions". En International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.191.
Texto completoArtero, Vincent. "Molecular-based H2-evolving photocathodes". En 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.077.
Texto completoStan, M. R., G. S. Rose y M. M. Zielger. "Hybrid CMOS/Molecular Electronic Circuits". En 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06). IEEE, 2006. http://dx.doi.org/10.1109/vlsid.2006.99.
Texto completoMilichko, Valentin A., Kristina S. Frizyuk, Pavel A. Dmitriev, Dmitry A. Zuev, George P. Zograf, Sergey V. Makarov y Pavel A. Belov. "Hybrid nanocavity for molecular sensing". En 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2017. http://dx.doi.org/10.1109/comcas.2017.8244858.
Texto completoHe, Chang. "Optimized molecular orientation and domain size enables efficient non-fullerene small-molecule organic solar cells". En 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.024.
Texto completoZhang, Rui y Feng Gao. "Manipulating molecular organization in high-efficiency organic solar cells". En Organic, Hybrid, and Perovskite Photovoltaics XXIII, editado por Gang Li, Thuc-Quyen Nguyen, Ana Flávia Nogueira, Barry P. Rand, Ellen Moons y Natalie Stingelin. SPIE, 2022. http://dx.doi.org/10.1117/12.2625152.
Texto completoInformes sobre el tema "Molecular hybrid"
George, Steven M. Hybrid Organic-Inorganic Films Grown Using Molecular Layer Deposition. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2011. http://dx.doi.org/10.21236/ada540366.
Texto completoMeza, J. C. y M. L. Martinez. A numerical study of hybrid optimization methods for the molecular conformation problems. Office of Scientific and Technical Information (OSTI), mayo de 1993. http://dx.doi.org/10.2172/10175387.
Texto completoSamarth, Nitin. Acquisition of Molecular Beam Epitaxy System for Fabrication of Hybrid Magnetic/Semiconductor Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2000. http://dx.doi.org/10.21236/ada384761.
Texto completoReisch, Bruce, Pinhas Spiegel-Roy, Norman Weeden, Gozal Ben-Hayyim y Jacques Beckmann. Genetic Analysis in vitis Using Molecular Markers. United States Department of Agriculture, abril de 1995. http://dx.doi.org/10.32747/1995.7613014.bard.
Texto completoWagner, D. Ry, Eliezer Lifschitz y Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, mayo de 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Texto completoVeilleux, Richard E., Jossi Hillel, A. Raymond Miller y David Levy. Molecular Analysis by SSR of Genes Associated with Alkaloid Synthesis in a Segregating Monoploid Potato Family. United States Department of Agriculture, mayo de 1994. http://dx.doi.org/10.32747/1994.7570550.bard.
Texto completoAvni, Adi y Kirankumar S. Mysore. Functional Genomics Approach to Identify Signaling Components Involved in Defense Responses Induced by the Ethylene Inducing Xyalanase Elicitor. United States Department of Agriculture, diciembre de 2009. http://dx.doi.org/10.32747/2009.7697100.bard.
Texto completoTel-Zur, Neomi y Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Texto completoEyal, Yoram y Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, mayo de 2000. http://dx.doi.org/10.32747/2000.7573076.bard.
Texto completoBlum, Abraham, Henry T. Nguyen y N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Texto completo