Artículos de revistas sobre el tema "Molecular electronics"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Molecular electronics.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Molecular electronics".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zotti, Linda A. "Molecular Electronics". Applied Sciences 11, n.º 11 (25 de mayo de 2021): 4828. http://dx.doi.org/10.3390/app11114828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

McCreery, Richard. "Molecular Electronics". Electrochemical Society Interface 13, n.º 1 (1 de marzo de 2004): 25–30. http://dx.doi.org/10.1149/2.f05041if.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mirkin, C. A. y M. A. Ratner. "Molecular Electronics". Annual Review of Physical Chemistry 43, n.º 1 (octubre de 1992): 719–54. http://dx.doi.org/10.1146/annurev.pc.43.100192.003443.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bloor, D. "Molecular Electronics". Physica Scripta T39 (1 de enero de 1991): 380–85. http://dx.doi.org/10.1088/0031-8949/1991/t39/061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Heath, James R. "Molecular Electronics". Annual Review of Materials Research 39, n.º 1 (agosto de 2009): 1–23. http://dx.doi.org/10.1146/annurev-matsci-082908-145401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

JACOBY, MITCH. "MOLECULAR ELECTRONICS". Chemical & Engineering News 80, n.º 24 (17 de junio de 2002): 4. http://dx.doi.org/10.1021/cen-v080n024.p004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Joachim, C. y M. A. Ratner. "Molecular electronics". Proceedings of the National Academy of Sciences 102, n.º 25 (14 de junio de 2005): 8800. http://dx.doi.org/10.1073/pnas.0504046102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bhunia, C. T. "Molecular Electronics". IETE Technical Review 13, n.º 1 (enero de 1996): 11–15. http://dx.doi.org/10.1080/02564602.1996.11416569.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Munn, Robert. "Molecular Electronics". Physics Bulletin 39, n.º 5 (mayo de 1988): 202–4. http://dx.doi.org/10.1088/0031-9112/39/5/021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bell, D. A. "Molecular electronics". Physics Bulletin 39, n.º 8 (agosto de 1988): 303. http://dx.doi.org/10.1088/0031-9112/39/8/003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Heath, James R. y Mark A. Ratner. "Molecular Electronics". Physics Today 56, n.º 5 (mayo de 2003): 43–49. http://dx.doi.org/10.1063/1.1583533.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hr. "Molecular Electronics". Journal of Molecular Structure 274 (noviembre de 1992): 316. http://dx.doi.org/10.1016/0022-2860(92)80172-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Calame, Michel y Christian Schönenberger. "Molecular Electronics". Imaging & Microscopy 8, n.º 2 (junio de 2006): 37. http://dx.doi.org/10.1002/imic.200790036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

ROTH, SIEGMAR. "Microswitches in molecular electronics-from molecular conductors to molecular electronics". International Journal of Electronics 73, n.º 5 (noviembre de 1992): 1019–26. http://dx.doi.org/10.1080/00207219208925760.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Marqués-González, Santiago y Paul J. Low. "Molecular Electronics: History and Fundamentals". Australian Journal of Chemistry 69, n.º 3 (2016): 244. http://dx.doi.org/10.1071/ch15634.

Texto completo
Resumen
The increasing difficulties of meeting ‘Moore’s Law’ rates of progress in conventional semiconductor electronics, coupled with the advent of methods capable of measuring the electronic properties of single molecules in a laboratory setting, have seen a surge of activity in the field of molecular electronics over the last decade. However, the concepts of molecular electronics are far from new, and the basic premise and ideas of molecular electronics have been shadowing those of solid-state semiconductor electronics since the middle of the 20th century. In this Primer Review, we introduce the topic of molecular electronics, drawing on some of the earliest expressions of the fundamental concepts, and summarizing key concepts to provide the interested reader with an entry to this fascinating field of science and emerging technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

D'Iorio, M. "Molecular materials for micro-electronics". Canadian Journal of Physics 78, n.º 3 (2 de abril de 2000): 231–41. http://dx.doi.org/10.1139/p00-033.

Texto completo
Resumen
Molecular organic materials have had an illustrious past but the ability to deposit these as homogeneous thin films has rejuvenated the field and led to organic light-emitting diodes (OLEDs) and the development of an increasing number of high-performance polymers for nonlinear and electronic applications. Whereas the use of organic materials in micro-electronics was restricted to photoresists for patterning purposes, polymeric materials are coming of age as metallic interconnects, flexible substrates, insulators, and semiconductors in all-plastic electronics. The focus of this topical review will be on organic light-emitting devices with a discussion of the most recent developments in electronic devices.PACS Nos.: 85.60Jb, 78.60Fi, 78.55Kz, 78.66Qn, 73.61Ph, 72.80Le
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Reed, M. A. "Molecular-scale electronics". Proceedings of the IEEE 87, n.º 4 (abril de 1999): 652–58. http://dx.doi.org/10.1109/5.752520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ratner, Mark A. "Introducing molecular electronics". Materials Today 5, n.º 2 (febrero de 2002): 20–27. http://dx.doi.org/10.1016/s1369-7021(02)05226-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Parodi, Mauro, Bruno Bianco y Alessandro Chiabrera. "Toward molecular electronics". Cell Biophysics 7, n.º 3 (septiembre de 1985): 215–35. http://dx.doi.org/10.1007/bf02790467.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Vuillaume, Dominique. "Molecular-scale electronics". Comptes Rendus Physique 9, n.º 1 (enero de 2008): 78–94. http://dx.doi.org/10.1016/j.crhy.2007.10.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Gryn’ova, G. y C. Corminboeuf. "Noncovalent Molecular Electronics". Journal of Physical Chemistry Letters 9, n.º 9 (17 de abril de 2018): 2298–304. http://dx.doi.org/10.1021/acs.jpclett.8b00980.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Langer, J. J., E. Uler y K. Golankiewicz. "Toward molecular electronics". Applied Physics A Solids and Surfaces 43, n.º 2 (junio de 1987): 139–41. http://dx.doi.org/10.1007/bf00617966.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kemp, M., V. Mujica y M. A. Ratner. "Molecular electronics: Disordered molecular wires". Journal of Chemical Physics 101, n.º 6 (15 de septiembre de 1994): 5172–78. http://dx.doi.org/10.1063/1.467373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

HUSSAIN, SYED-ARSHAD y D. BHATTACHARJEE. "LANGMUIR–BLODGETT FILMS AND MOLECULAR ELECTRONICS". Modern Physics Letters B 23, n.º 29 (20 de noviembre de 2009): 3437–51. http://dx.doi.org/10.1142/s0217984909021508.

Texto completo
Resumen
Molecular electronics is a new, exciting and interdisciplinary field of research. The main concern of the subject is to exploit the organic materials in electronic and optoelectronic devices. On the other hand, the Langmuir–Blodgett (LB) film deposition technique is one of the best among few methods used to manipulate materials at the molecular level. In this article, the LB film preparation technique is discussed briefly with an emphasis on its application towards molecular electronics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Yakhmi, Jatinder V. y Vaishali Bambole. "Molecular Spintronics". Solid State Phenomena 189 (junio de 2012): 95–127. http://dx.doi.org/10.4028/www.scientific.net/ssp.189.95.

Texto completo
Resumen
The emergence of spintronics (spin-based electronics), which exploits electronic charge as well as the spin degree of freedom to store/process data has already seen some of its fundamental results turned into actual devices during the last decade. Information encoded in spins persists even when the device is switched off; it can be manipulated with and without using magnetic fields and can be written using little energy. Eventually, spintronics aims at spin control of electrical properties (I-V characteristics), contrary to the common process of controlling the magnetization (spins) via application of electrical field. In the meantime, another revolution in electronics appears to be unfolding, with the evolution of Molecular Spintronics which aims at manipulating spins and charges in electronic devices containing one or more molecules, because a long spin lifetime is expected from the very small spin-orbit coupling in organic semiconductors. This futuristic area is fascinating because it promises the integration of memory and logic functions,
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

LI, QILIANG. "HYBRID SILICON-MOLECULAR ELECTRONICS". Modern Physics Letters B 22, n.º 12 (20 de mayo de 2008): 1183–202. http://dx.doi.org/10.1142/s0217984908016054.

Texto completo
Resumen
As CMOS technology extends beyond the current technology node, many challenges to conventional MOSFET were raised. Non-classical CMOS to extend and fundamentally new technologies to replace current CMOS technology are under intensive investigation to meet these challenges. The approach of hybrid silicon/molecular electronics is to provide a smooth transition technology by integrating molecular intrinsic scalability and diverse properties with the vast infrastructure of traditional MOS technology. Here we discuss: (1) the integration of redox-active molecules into Si -based structures, (2) characterization and modeling of the properties of these Si /molecular systems, (3) single and multiple states of Si /molecular memory, and (4) applications based on hybrid Si /molecular electronic system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Pilkuhn, M. H. "Molecular Electronics: Beyond the Limits of Conventional Electronics". International Journal of Polymeric Materials 44, n.º 3-4 (octubre de 1999): 305–15. http://dx.doi.org/10.1080/00914039908009700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Verdaguer, M. "Molecular Electronics Emerges from Molecular Magnetism". Science 272, n.º 5262 (3 de mayo de 1996): 698–99. http://dx.doi.org/10.1126/science.272.5262.698.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Waldeck, D. H. y D. N. Beratan. "Molecular Electronics: Observation of Molecular Rectification". Science 261, n.º 5121 (30 de julio de 1993): 576–77. http://dx.doi.org/10.1126/science.261.5121.576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Pethrick, Richard A. "Molecular Electronics Electronic Applications of Organic Molecules and Polymers". Interdisciplinary Science Reviews 12, n.º 3 (1 de septiembre de 1987): 278–84. http://dx.doi.org/10.1179/030801887789799042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Mayor, Marcel y Heiko B. Weber. "Molecular Electronics – Integration of Single Molecules in Electronic Circuits". CHIMIA International Journal for Chemistry 56, n.º 10 (1 de octubre de 2002): 494–99. http://dx.doi.org/10.2533/000942902777680144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Pethrick, Richard A. "Molecular Electronics Electronic Applications of Organic Molecules and Polymers". Interdisciplinary Science Reviews 12, n.º 3 (septiembre de 1987): 278–84. http://dx.doi.org/10.1179/isr.1987.12.3.278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

KANEKO, FUTAO. "Molecular Electronics is Interesting!" Journal of the Institute of Electrical Engineers of Japan 114, n.º 1 (1994): 39–44. http://dx.doi.org/10.1541/ieejjournal.114.39.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

IWAMOTO, Mitsumasa y Takashi NAKAGIRI. "Materials for molecular electronics." Nihon Kessho Gakkaishi 28, n.º 2 (1986): 188–95. http://dx.doi.org/10.5940/jcrsj.28.188.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Heath, J. R. "More on Molecular Electronics". Science 303, n.º 5661 (20 de febrero de 2004): 1136c—1137. http://dx.doi.org/10.1126/science.303.5661.1136c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Barker, J. R. "Prospects for Molecular Electronics". Microelectronics International 4, n.º 3 (marzo de 1987): 19–24. http://dx.doi.org/10.1108/eb044287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Rawlett, Adam M., Theresa J. Hopson, Islamshah Amlani, Ruth Zhang, John Tresek, Larry A. Nagahara, Raymond K. Tsui y Herb Goronkin. "A molecular electronics toolbox". Nanotechnology 14, n.º 3 (30 de enero de 2003): 377–84. http://dx.doi.org/10.1088/0957-4484/14/3/305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Hodgkiss, Justin, Eli Zysman-Colman, Simon Higgins, Gemma Solomon, Ioan Bâldea, Ifor Samuel, Latha Venkataraman et al. "Molecular electronics: general discussion". Faraday Discuss. 174 (18 de noviembre de 2014): 125–51. http://dx.doi.org/10.1039/c4fd90049a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Rakshit, Titash, Geng-Chiau Liang, Avik W. Ghosh y Supriyo Datta. "Silicon-based Molecular Electronics". Nano Letters 4, n.º 10 (octubre de 2004): 1803–7. http://dx.doi.org/10.1021/nl049436t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

KISLOV, V. V., Yu V. GULYAEV, V. V. KOLESOV, I. V. TARANOV, S. P. GUBIN, G. B. KHOMUTOV, E. S. SOLDATOV, I. A. MAXIMOV y L. SAMUELSON. "ELECTRONICS OF MOLECULAR NANOCLUSTERS". International Journal of Nanoscience 03, n.º 01n02 (febrero de 2004): 137–47. http://dx.doi.org/10.1142/s0219581x04001912.

Texto completo
Resumen
The molecular nanoclusters proved to be very promising objects for applications in electronics not only because they have absolutely identical chemical structure and allow for bottom to top approach in constructing new electronic devices, but also for the possibility to design and create great variety of such clusters with specific properties. The formation and deposition of mixed Langmuir monolayers composed of inert amphiphile molecular matrix and guest ligand-stabilized metal-core nanoclusters are described. This approach allowed to obtain the ordered stable reproducible planar monolayer and multilayer nanocluster nanostructures on solid substrates. The use of novel polymeric Langmuir monolayers formed by amphiphilic polyelectrolytes and nanoclusters resulted in fabrication of ultimately thin monomolecular nanoscale-ordered stable planar polymeric nanocomposite films. The morphology and electron transport in fabricated nanostructures were studied experimentally using AFM and STM. The effects of single electron tunneling at room temperature through molecular cluster object containing finite number of localized states were theoretically investigated taking into account electron–electron Coulomb interaction. It is shown that tunnel current-bias voltage characteristic of such tunnel junction is characterized by a number of staircase steps equal to the number of cluster's eigenlevels, however the fronts of each steps are asymptotically linear with finite inclination. The analytically obtained current–voltage characteristics are in agreement with experimental results for electron tunneling through molecular nanoclusters at room temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bloor, D. "Prospects for Molecular Electronics". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 234, n.º 1 (octubre de 1993): 1–12. http://dx.doi.org/10.1080/10587259308042893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Lotan, Noah, Gal Ashkenazi, Samuel Tuchman, Sigalit Nehamkin y Samuel Sideman. "Molecular Bio-Electronics Biomaterials". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 236, n.º 1 (octubre de 1993): 95–104. http://dx.doi.org/10.1080/10587259308055214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Scheer, Elke y Peter Reineker. "Focus on Molecular Electronics". New Journal of Physics 10, n.º 6 (30 de junio de 2008): 065004. http://dx.doi.org/10.1088/1367-2630/10/6/065004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cerofolini, G. F. y E. Romano. "Molecular electronics in silico". Applied Physics A 91, n.º 2 (23 de febrero de 2008): 181–210. http://dx.doi.org/10.1007/s00339-008-4415-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Sigmund, E., P. Gribi y G. Isenmann. "Concepts in molecular electronics". Applied Surface Science 65-66 (marzo de 1993): 342–48. http://dx.doi.org/10.1016/0169-4332(93)90683-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kushmerick, James G., Amy Szuchmacher Blum y David P. Long. "Metrology for molecular electronics". Analytica Chimica Acta 568, n.º 1-2 (mayo de 2006): 20–27. http://dx.doi.org/10.1016/j.aca.2005.12.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Joachim, C. "Molecular and intramolecular electronics". Superlattices and Microstructures 28, n.º 4 (octubre de 2000): 305–15. http://dx.doi.org/10.1006/spmi.2000.0918.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Michl, Josef. "Molecular and biomolecular electronics". International Journal of Quantum Chemistry 62, n.º 2 (1997): 237–38. http://dx.doi.org/10.1002/(sici)1097-461x(1997)62:2<237::aid-qua11>3.0.co;2-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Simon, J. y C. Sirlin. "Mesomorphic molecular materials for electronics, opto-electronics, iono-electronics: Octaalkyl-phthalocyanine derivatives". Pure and Applied Chemistry 61, n.º 9 (1 de enero de 1989): 1625–29. http://dx.doi.org/10.1351/pac198961091625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Herrer, Lucía, Santiago Martín y Pilar Cea. "Nanofabrication Techniques in Large-Area Molecular Electronic Devices". Applied Sciences 10, n.º 17 (1 de septiembre de 2020): 6064. http://dx.doi.org/10.3390/app10176064.

Texto completo
Resumen
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía