Literatura académica sobre el tema "Molecular electronics"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Molecular electronics".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Molecular electronics"

1

Zotti, Linda A. "Molecular Electronics". Applied Sciences 11, n.º 11 (25 de mayo de 2021): 4828. http://dx.doi.org/10.3390/app11114828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

McCreery, Richard. "Molecular Electronics". Electrochemical Society Interface 13, n.º 1 (1 de marzo de 2004): 25–30. http://dx.doi.org/10.1149/2.f05041if.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mirkin, C. A. y M. A. Ratner. "Molecular Electronics". Annual Review of Physical Chemistry 43, n.º 1 (octubre de 1992): 719–54. http://dx.doi.org/10.1146/annurev.pc.43.100192.003443.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bloor, D. "Molecular Electronics". Physica Scripta T39 (1 de enero de 1991): 380–85. http://dx.doi.org/10.1088/0031-8949/1991/t39/061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Heath, James R. "Molecular Electronics". Annual Review of Materials Research 39, n.º 1 (agosto de 2009): 1–23. http://dx.doi.org/10.1146/annurev-matsci-082908-145401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

JACOBY, MITCH. "MOLECULAR ELECTRONICS". Chemical & Engineering News 80, n.º 24 (17 de junio de 2002): 4. http://dx.doi.org/10.1021/cen-v080n024.p004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Joachim, C. y M. A. Ratner. "Molecular electronics". Proceedings of the National Academy of Sciences 102, n.º 25 (14 de junio de 2005): 8800. http://dx.doi.org/10.1073/pnas.0504046102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bhunia, C. T. "Molecular Electronics". IETE Technical Review 13, n.º 1 (enero de 1996): 11–15. http://dx.doi.org/10.1080/02564602.1996.11416569.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Munn, Robert. "Molecular Electronics". Physics Bulletin 39, n.º 5 (mayo de 1988): 202–4. http://dx.doi.org/10.1088/0031-9112/39/5/021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bell, D. A. "Molecular electronics". Physics Bulletin 39, n.º 8 (agosto de 1988): 303. http://dx.doi.org/10.1088/0031-9112/39/8/003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Molecular electronics"

1

Rajagopal, Senthil Arun. "SINGLE MOLECULE ELECTRONICS AND NANOFABRICATION OF MOLECULAR ELECTRONIC DEVICES". Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1155330219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jäckel, Frank. "Self assembly and electronic properties of conjugated molecules: towards mono molecular electronics". [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975579010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Peters, Ben. "Switchable molecular electronics". Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Qian, Xiaofeng. "Electronic structure and transport in molecular and nanoscale electronics". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44783.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2008.
Includes bibliographical references (p. 239-256).
Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical nature of electrons and dimensionality of systems play the critical roles in their electronic, magnetic and optical properties. Our first approach is based on Green's function method with ab initio quasiatomic orbitals within Landauer formalism. To efficiently and accurately apply Green's function method, we develop a minimal basis-set of quasiatomic orbitals from plane-wave density functional theory (DFT) results. This minimal basis-set resembles quasi-angular momentum characteristics in solid state systems and it further validates Slater's original idea of linear combinations of atomic orbitals. Based on their ab initio tight-binding matrices, the accuracy, efficiency and stability of our scheme are demonstrated by various examples, including band structure, Fermi surface, Mülliken charge, bond order, and quasiatomic-orbitals-projected band structure and quasiatomic-orbitals-projected Fermi surface. Remarkably these quasiatomic orbitals reveal the symmetry and chemical bonding nature of different molecular, surface and solid systems. With this minimal basis-set, quantum conductance and density of states of coherent electron transport are calculated by Green's function method in the Landauer formalism. Several molecular and nanoscale systems are investigated including atomic wires, benzene dithiolate, phenalenyl dithiolate and carbon nanotube with and without different types of defects.
(cont.) Conductance eigenchannel decomposition, phase-encoded conductance eigenchannel visualization, and local current mapping are applied to achieve deeper understandings of electron transport mechanism, including spin dependence, dimensionality dependence, defect dependence, and quantum loop current induced by time-reversal symmetry breaking. Our second approach naturally arises due to the fact that electron transport is an excited state process. Time-dependent density functional theory (TDDFT) is a fundamental approach to account for dynamical correlations of wave functions and correct band gap in DFT. In our second approach, we mainly focus on the mathematical formulation and algorithm development of TDDFT with ultrasoft pseudopotentials and projector augmented wave method. Calculated optical absorption spectrum gives correct positions and shapes of excitation peaks compared to experimental results and other TDDFT results with norm-conserving pseudopotentials. Our method is further applied to study Fermi electron transmission through benzene dithiolate molecular junction sandwiched by two gold chains. It is first verified that group velocity of Fermi electron in the gold chain obtained by TDDFT agrees with that from band structure theory. Then under rigid band and zero bias approximations, a tiny Fermi electron wave packet from the chain is injected into the molecular junction. Transmission coefficient evaluated after the scattering process is around 5%. This is in agreement with the result from Green's function method. The two methods also show similar characteristic propagation channel. This nice agreement verifies that Green's function approach based on DFT reaches the TDDFT result without dynamical electron correlations in the linear response region.
(cont.) With further development, our quasiatomic orbitals can serve as a minimal basis-set to combine non-equilibrium Green's function and TDDFT together with GW quasi-particle corrections. The unified method will provide a more accurate and efficient way to explore various molecular and nanoscale electronic devices such as chemical sensor, electromechanical device, magnetic memory, and optical electronics.
by Xiaofeng Qian.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Larade, Brian. "Theory of molecular electronics". Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38496.

Texto completo
Resumen
One of the central problems of molecular electronics is to understand electron conduction properties when a functional molecule is interfaced with external electrodes and put under external bias and gate potentials. These properties are influenced by the molecule-electrode interaction as well as by the structure of the functional region of the device. In this thesis, we investigate from first-principles the transport properties of a number of molecular-scale systems, and try to relate the observed features to both the atomic and electronic structure.
We start with a detailed analysis of transport through carbon atomic wires, and find that the equilibrium conductance is sensitive to charge transfer doping, and that the I-V characteristics exhibit negative differential resistance at high bias due to a shift of conduction channels relative to the states of the electrodes.
Using a Sc3N C80 metallofullerene device, we address several general questions about quantum transport through molecular systems and provide strong evidence that transport in such molecular devices is mediated by molecular electronic states which have been renormalized by the device environment.
The possibility of inducing nuclear dynamics in single-molecule Au-C 60-Au transistors via inelastic, resonance-mediated tunneling current is examined using a method based on the combination of a theory of current-triggered dynamics[1] and our nonequilibrium Green's function approach of computing electron transport properties.
We investigate several single molecule field-effect transistors consisting of conjugated molecules in contact with metallic electrodes. The source-drain current is found to be sensitive to the external gate potential and the molecular structure; with modulations of the current as large as several thousand fold.
Given a proposed operation principle, we obtain quantitative results on the rectification properties for an organic molecule rectifying diode. The I-V characteristic shows clear rectification behavior, and is explained from the simple picture of shifting of molecular levels due to substituents and an externally applied bias voltage.
Finally, we report a formulation combining density functional theory with the Keldysh nonequilibrium Green's function, for calculating quantum mechanical forces under external bias and during electron transport. We present an example force calculation consisting of a single atom point contact.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ryno, Sean Michael. "Molecular-scale understanding of electronic polarization in organic molecular crystals". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53919.

Texto completo
Resumen
Organic electronic materials, possessing conjugated π-systems, are extensively used as the active layers in organic electronic devices, where they are responsible for charge transport. In this dissertation, we employ a combination of quantum-mechanical and molecular- mechanics methods to provide insight into how molecular structure, orientation, packing, and local molecular environment influence the energetic landscape experienced by an excess charge in these organic electronic materials. We begin with an overview of charge transport in organic electronic materials with a focus on electronic polarization while discussing recent models, followed by a review of the computational methods employed throughout our investigations. We provide a bottom-up approach to the problem of describing electronic polarization by first laying the framework of our model and comparing calculated properties of bulk materials to available experimental data and previously proposed models. We then explore the effects of changing the electronic structure of our systems though perfluorination, and investigate the effects of modifying the crystalline packing through the addition of bulky functional groups while investigating how the non-bonded interactions between molecular neighbors change in different packing motifs. As interfaces are common in organic electronics and important processes such as charge transport and charge separation occur at these interfaces, we model organic-vacuum and organic-organic interfaces to determine the effect changing the environment from bulk to interface has on the electronic polarization. We first investigate the effects of removing polarizable medium adjacent to the charge carrier and then, by modeling a realistic organic- organic interface in a model solar cell, probe the environment of each molecular site at the interface to gain a more complete understanding of the complex energetic landscape. Finally, we conclude with a study of the non-bonded interactions in linear oligoacene dimers, model π-conjugated materials, to assess the impact of dimer configuration and acene length on the intermolecular interaction energy, and highlight the importance of dispersion and charge penetration to these systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wiles, Alan Andrew. "Redox active molecules with molecular electronics and synthetic applications". Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4878/.

Texto completo
Resumen
Redox active molecules are ubiquitous to nature and have properties that make them coveted targets for applications in areas of synthesis as well as for the development of materials. This thesis describes the synthesis and characterisation of several flavin donor-acceptor dyads designed around an oligothiophene donor backbone and a flavin acceptor moiety. These show potential applications as optoelectronic materials. It also describes the synthesis of a ferrocene-flavin tetracyanobutadiene super-acceptor compound which showed preliminary evidence of non-linear-optic effects. Finally, a novel method was developed to investigate the redox umpolung activated reactions of vinylferrocene. The vinyl group of vinylferrocene was activated by polarity inversion of ferrocene to ferrocenium and was able to undergo Diels-Alder cycloadditions with cyclobutadiene and furan, as well as, Markovnikov addition of thiols. These reactions were then used to explore the use of vinylferrocene as a redox auxiliary and as a redox active tag in polymers and have the potential to be used in nanoparticles as well as biological systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ruttkowski, Eike. "Device development for molecular electronics /". Göttingen : Sierke, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016480628&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Vezzoli, Andrea. "Environmental effects in molecular electronics". Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2031980/.

Texto completo
Resumen
Researchers have looked at the possibility of using single molecules as functional building blocks in electronics circuits since the 1970s. The field of molecular electronics, despite its experimental and theoretical challenges, has continued to grow incessantly from a simple scientific curiosity to an emerging field with hundreds of publications per year. Thanks to the development of scanning probe microscopy a variety of techniques currently used to characterise the electrical properties of single molecules has been developed, and molecular systems mimicking the behaviour of traditional electronic components, such as transistors or rectifiers, have been prepared. Despite the obvious fact that supramolecular interactions must play a role in the charge transfer process, only a small number of reports on the subject have been published. In this thesis a set of molecular wires with an oligothiophene central unit, sandwiched between two insulating chains, has been used to probe the effect of such interactions on molecular conductance using several scanning tunnelling microscopy techniques. It has been found that the side-chain length has little effect on molecular conductance, but the presence of water in the surrounding environment triggers an increase in conductance and a switch in the behaviour from activationless to thermally-activated. Furthermore, upon exposure to electron-withdrawing small molecules, these oligothiophene molecular wires form charge transfer complexes, with conductance enhanced by a factor up to 100. Measurements performed in UHV confirmed the observed behaviour, and theoretical calculations were performed to explain it in the coherent tunnelling regime. A gateway state arising from coupling of the molecular backbone to the sulfur contacts accounts for the observed shallow decay of conductance with length, while shifting of transport resonances upon interaction with water and the appearance of interference features upon charge transfer complexation explained the temperature dependence and the conductance enhancement, with experimental observation closely matched by DFT calculations.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Molecular electronics"

1

Kristof, Sienicki, ed. Molecular electronics and molecular electronic devices. Boca Raton, FL: CRC Press, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hong, Felix T., ed. Molecular Electronics. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7482-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lazarev, P. I., ed. Molecular Electronics. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3392-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Joshua, Jortner, Ratner Mark A. 1942- y International Union of Pure and Applied Chemistry., eds. Molecular electronics. Osney Mead, Oxford [England]: Blackwell Science, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

1947-, Ashwell Geoffrey J., ed. Molecular electronics. Taunton, Somerset, England: Research Studies Press, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chiu, Chien-Yang. Putting Molecules into Molecular Electronics. [New York, N.Y.?]: [publisher not identified], 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cuniberti, Gianaurelio, Klaus Richter y Giorgos Fagas, eds. Introducing Molecular Electronics. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-31514-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Guo, Xuefeng, ed. Molecular-Scale Electronics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03305-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mitsumasa, Iwamoto, ed. Nano-molecular electronics. Tokyo: Japanese Journal of Applied Physics, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

R, Reimers Jeffrey y United Engineering Foundation (U.S.), eds. Molecular electronics III. New York, N.Y: New York Academy of Sciences, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Molecular electronics"

1

Petty, Michael C., Takashi Nagase, Hitoshi Suzuki y Hiroyoshi Naito. "Molecular Electronics". En Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_51.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zwolak, Michael y Massimiliano Di Ventra. "Molecular Electronics". En Introduction to Nanoscale Science and Technology, 261–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7757-2_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ghosh, Subhasis. "Molecular Electronics". En Advanced Structured Materials, 235–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6214-8_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Launay, J. P. "Molecular Electronics". En Granular Nanoelectronics, 413–23. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nagahara, Larry A. "Molecular Electronics". En Printed Organic and Molecular Electronics, 615–67. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9074-7_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Petty, Michael. "Molecular Electronics". En Springer Handbook of Electronic and Photonic Materials, 1219–39. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29185-7_53.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Goodsell, David S. "Molecular Electronics". En Atomic Evidence, 77–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32510-1_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ngo, Christian y Marcel H. Van de Voorde. "Molecular Electronics". En Nanotechnology in a Nutshell, 165–78. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-012-6_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Yamada, Toyo Kazu. "Single Molecular Spintronics". En Electronic Processes in Organic Electronics, 403–16. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55206-2_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Pope, Martin y Charlese E. Swenberg. "Molecular electronics". En Electronic Processes in Organic Crystals and Polymers, 1172–81. Oxford University PressNew York, NY, 1999. http://dx.doi.org/10.1093/oso/9780195129632.003.0019.

Texto completo
Resumen
Abstract Molecular electronics as a discipline is practiced by essentially two groups of investigators, and these groups define the field. One group studies the electronic properties of molecular materials without primary focus on the number of molecules involved and the other attempts to reduce the size of the molecular domain that will carry out the electronic task to that of a single molecule, or a few molecules. At present, there is much greater activity in the former group, although there is an inevitable blurring of distinctions between the two groups. Molecular electronics includes liquid-crystal displays, NLO devices, electrophotography, electroluminescence, photoconductive and photovoltaic devices, ferroelectrics, sensors, batteries, and, more recently, metallic, magnetic, and superconductive systems. An introduction to the developments in this field is provided by Petty (1996).
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Molecular electronics"

1

Butts, Michael, Andrée DeHon y Seth Copen Goldstein. "Molecular electronics". En the 2002 IEEE/ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/774572.774636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

MÜLLER, KARL-HEINZ. "TOWARDS MOLECULAR ELECTRONICS: CONDUCTION OF SINGLE MOLECULES". En Oz Nano 03. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702692_0023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Greenbaum, E. "Biological molecular electronics". En Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lyshevski, M. A. "Molecular Fluidic Electronics". En 2006 Sixth IEEE Conference on Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/nano.2006.247599.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pal, Amlan J. "From organic electronics to molecular electronics". En SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709872.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Keukes, Phil. "Defect tolerant molecular electronics". En the 33rd annual ACM/IEEE international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/360128.360131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Vilan, Ayelet, David Cahen, Dinesh K. Aswal y Anil K. Debnath. "Molecular Electronics—Current Challenges". En INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

PANTELIDES, SOKRATES T., MASSIMILIANO DI VENTRA y NORTON D. LANG. "SIMULATIONS OF MOLECULAR ELECTRONICS". En Papers Presented at MMN 2000. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810861_0083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Terao, J. "(Invited) Functionalized Insulated Molecular Wires for Molecular Electronics". En 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.e-1-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hall, Drew A., Nagaraj Ananthapad Manabhan, Chulmin Choi, Le Zheng, Paul P. Pan, Carl W. Fuller, Pius P. Padayatti et al. "A CMOS Molecular Electronics Chip for Single-Molecule Biosensing". En 2022 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2022. http://dx.doi.org/10.1109/isscc42614.2022.9731770.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Molecular electronics"

1

Pearl, Thomas P. Nanoscale Electronics from a Molecular Perspective. Fort Belvoir, VA: Defense Technical Information Center, enero de 2012. http://dx.doi.org/10.21236/ada559736.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tour, James M., Ruilian Wu y Jeffry S. Schumm. Approaches to Orthogonally Fused Conducting Polymers for Molecular Electronics. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada236253.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dentinger, Paul M., Gregory F. Cardinale, Luke L. Hunter y Albert Alec Talin. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography. Office of Scientific and Technical Information (OSTI), diciembre de 2003. http://dx.doi.org/10.2172/918247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Barron, Andrew R. Group III Materials: Molecular Design of New Phases with Applications in Electronics and Optoelectronics,. Fort Belvoir, VA: Defense Technical Information Center, julio de 1996. http://dx.doi.org/10.21236/ada310607.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pantelides, Sokrates T., Mark A. Reed, James S. Murday y Ari Aviram. Materials Research Society Symposium Proceedings Volume 582. Molecular Electronics. Symposium held November 29-December 2, 1999, Boston, Massachusetts, U.S.A. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1999. http://dx.doi.org/10.21236/ada389363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Datta, S., R. P. Andres, D. B. Janes, C. P. Kubiak y R. G. Reifenberger. Electronic Conduction in Molecular Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, enero de 1998. http://dx.doi.org/10.21236/ada344360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kasha, Michael. Energy Transformation in Molecular Electronic Systems. Office of Scientific and Technical Information (OSTI), mayo de 1999. http://dx.doi.org/10.2172/8186.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lopez, Rafael, Ignacio Ema, Guillermo Ramirez y Jaime Fernandez Rico. Molecular Slater Integrals for Electronic Energy Calculations. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2010. http://dx.doi.org/10.21236/ada531785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Langhoff, P. W., J. A. Boatz, R. J. Hinde y J. A. Sheehy. Atomic Spectral Methods for Molecular Electronic Structure Calculations. Fort Belvoir, VA: Defense Technical Information Center, junio de 2004. http://dx.doi.org/10.21236/ada429238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kresin, Vitaly. Delocalized electrons in atomic and molecular nanoclusters. Office of Scientific and Technical Information (OSTI), enero de 2018. http://dx.doi.org/10.2172/1417266.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía