Libros sobre el tema "Molecular Dynamics- Fluids"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Molecular Dynamics- Fluids.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores mejores libros para su investigación sobre el tema "Molecular Dynamics- Fluids".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lee, Lloyd L. Molecular thermodynamics of nonideal fluids. Boston: Butterworths, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sadus, Richard J. Molecular simulation of fluids: Theory, algorithms, and object-orientation. Amsterdam: Elsevier, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Arce, Pedro F. Fluid phase behavior of systems involving high molecular weight compounds and supercritical fluids. Hauppauge, N.Y: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

1941-, Lichtenthaler Ruediger N. y Azevedo, Edmundo Gomes de, 1949-, eds. Molecular thermodynamics of fluid-phase equilibria. 3a ed. Upper Saddle River, N.J: Prentice Hall PTR, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

1941-, Lichtenthaler Ruediger N. y Azevedo, Edmundo Gomes de, 1949-, eds. Molecular thermodynamics of fluid-phase equilibria. 2a ed. Englewood Cliffs, N.J: Prentice-Hall, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Complex dynamics of glass-forming liquids: A mode-coupling theory. New York: Oxford University Press, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Marc, Baus, Rull Luis F, Ryckaert Jean-Paul, North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Study Institute on Observation, Prediction and Simulation of Phase Transitions in Complex Fluids (1994 : Varenna, Italy), eds. Observation, prediction and simulation of phase transitions in complex fluids. Dordrecht: Kluwer Academic Publishers, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Collins, Michael W. Micro and Nano Flow Systems for Bioanalysis. New York, NY: Springer New York, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Greenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Antonchenko, V. I͡A. Fizika vody. Kiev: Nauk. dumka, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Michel, Mareschal, Holian Brad Lee y North Atlantic Treaty Organization. Scientific Affairs Division., eds. Microscopic simulations of complex hydrodynamic phenomena. New York: Plenum Press, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Giuseppe, Tomassetti, ed. Introduction to molecular beams gas dynamics. London: Imperial College Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Lim, Melvin Choon Giap. Carbon Nanotubes as Nanodelivery Systems: An Insight Through Molecular Dynamics Simulations. Singapore: Springer Singapore, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows (1995 Maretea, Italy). Molecular physics and hypersonic flows: [proceedings of the NATO NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows, Maretea, Italy, May 21-June 3, 1995]. Dordrecht: Kluwer Academic in cooperation with NATO Scientific Affairs Division, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Keil, Frerich. Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

J, Tildesley D., ed. Computer simulation of liquids. Oxford [England]: Clarendon Press, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

J, Tildesley D., ed. Computer simulation of liquids. Oxford [England]: Clarendon Press, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Tatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Center, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Center, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sadus. Molecular Simulation of Fluids. Elsevier Science, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lee, Lloyd L. y Howard Brenner. Molecular Thermodynamics of Nonideal Fluids. Elsevier Science & Technology Books, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Lucas, Klaus. Molecular Models for Fluids. University of Cambridge ESOL Examinations, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Molecular Models for Fluids. Cambridge University Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, 2022.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Eckhardt, Wolfgang, Hans-Joachim Bungartz, Alexander Heinecke y Martin Horsch. Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics. Springer London, Limited, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Eckhardt, Wolfgang, Hans-Joachim Bungartz, Alexander Heinecke y Martin Horsch. Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics. Springer, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sadus. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier Science & Technology Books, 2022.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bosch, Dr Alexandra ten. Analytical Molecular Dynamics Of Fluids: From Atoms To Oceans. Independently published, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Slow Dynamics in Complex Systems: 3rd International Symposium on Slow Dynamics in Complex Systems (AIP Conference Proceedings / Atomic, Molecular, Chemical Physics). American Institute of Physics, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Kremer, Friedrich. Dynamics in Geometrical Confinement. Springer London, Limited, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Dynamics in Geometrical Confinement. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Succi, Sauro. Numerical Methods for the Kinetic Theory of Fluids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0010.

Texto completo
Resumen
This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Boon, Jean Pierre y Sidney Yip. Molecular Hydrodynamics. Dover Publications, Incorporated, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Allen, Michael P. y Dominic J. Tildesley. Nonequilibrium molecular dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0011.

Texto completo
Resumen
This chapter explains some of the fundamental issues associated with applying perturbations to a molecular dynamics simulation, along with practical details of methods for studying systems out of equilibrium. The main emphasis is on fluid flow and viscosity measurements. Spatially homogeneous perturbations are described to study shear and extensional flow. Non-equilibrium methods are applied to the study of heat flow and the calculation of the thermal conductivity. Issues of thermostatting, and the modelling of surface-fluid interactions for inhomogeneous systems, are discussed. The measurement of free energy changes through non-equilibrium work expressions such as those of Jarzynski and Crooks is also explained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Collins, Michael W. y Carola S. Koenig. Micro and Nano Flow Systems for Bioanalysis. Springer, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Succi, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.

Texto completo
Resumen
Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Holian, Brad Lee y Michel Mareschal. Microscopic Simulations of Complex Hydrodynamic Phenomena. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

(Editor), Michel Mareschal y Brad Lee Holian (Editor), eds. Microscopic Simulations of Complex Hydrodynamic Phenomena (NATO Science Series: B:). Springer, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Tomassetti, Giuseppe y Giovanni Sanna. Introduction to Molecular Beam Gas Dynamics. Imperial College Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Webb, Andrew. Colloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0056.

Texto completo
Resumen
Colloid solutions are homogenous mixtures of large molecules suspended in a crystalloid solution. The efficacy of colloids as volume substitutes or expanders, and length of effect are determined by their physicochemical properties. Smaller volumes of colloid than crystalloid are required for resuscitation. The primary use of colloids is in the correction of circulating volume. Rather than using fixed haemodynamic endpoints, fluid can be given in small aliquots with assessment of the dynamic haemodynamic response to each aliquot. The aim of a fluid challenge is to produce a small, but significant (200 mL) and rapid increase in plasma volume with changes in central venous pressure or stroke volume used to judge fluid responsiveness. Colloid fluids give a reliable increase in plasma volume to judge fluid responsiveness.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Nuclear dynamics: Molecular biology and visualization of the nucleus. Tokyo: Springer, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Cowan, Martin E. Synthesis and characterization of high molecular weight water-soluble polymers to study the role of extensional viscosity in polymeric drag reduction. 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Zachrich, Gregory Allen. Experimental determination of the molecular diffusion coefficient of gases by enhanced dispersion in oscillatory flows. 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

(Editor), K. Nagata y K. Takeyasu (Editor), eds. Nuclear Dynamics. Springer, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Keil, Frerich, Wolfgang Mackens, Heinrich Voß y Joachim Werther. Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties. Springer London, Limited, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía