Literatura académica sobre el tema "Modern power systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modern power systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Modern power systems"
Chen, Zhe. "Wind power in modern power systems". Journal of Modern Power Systems and Clean Energy 1, n.º 1 (junio de 2013): 2–13. http://dx.doi.org/10.1007/s40565-013-0012-4.
Texto completoBadrzadeh, Babak. "Power conversion systems for modern ac-dc power systems". European Transactions on Electrical Power 22, n.º 7 (18 de agosto de 2011): 879–906. http://dx.doi.org/10.1002/etep.611.
Texto completoWiszniewski, A. y T. Lobos. "Editorial: Modern electric power systems". IEE Proceedings - Generation, Transmission and Distribution 151, n.º 2 (2004): 239. http://dx.doi.org/10.1049/ip-gtd:20040285.
Texto completoMezhman, Igor Frantsevich y Daria Sergeevna Kovtun. "ANALYSIS OF MODERN POWER SYSTEMS". OlymPlus. Гуманитарная версия, n.º 1 (2022): 72–75. http://dx.doi.org/10.46554/olymplus.2022.1(14).pp.72.
Texto completoSharma, Dushyant y Sukumar Mishra. "Power system frequency stabiliser for modern power systems". IET Generation, Transmission & Distribution 12, n.º 9 (15 de mayo de 2018): 1961–69. http://dx.doi.org/10.1049/iet-gtd.2017.1295.
Texto completoVlachogiannis, John G. "Quantum Computing in Modern Power Systems". Quantum Matter 3, n.º 6 (1 de diciembre de 2014): 489–94. http://dx.doi.org/10.1166/qm.2014.1151.
Texto completoMori, Tadashi y Katsumi Suzuki. "Switching Duties in Modern Power Systems". IEEJ Transactions on Power and Energy 119, n.º 3 (1999): 313–16. http://dx.doi.org/10.1541/ieejpes1990.119.3_313.
Texto completoKovalev, G. F., D. S. Krupenev y L. M. Lebedeva. "Modern problems of electric power systems reliability". Automation and Remote Control 71, n.º 7 (julio de 2010): 1436–41. http://dx.doi.org/10.1134/s0005117910070179.
Texto completoKularatna, Nihal. "Power Conditioning and Power Protection for Electronic Systems". Energies 16, n.º 6 (13 de marzo de 2023): 2671. http://dx.doi.org/10.3390/en16062671.
Texto completoEgorov, Alexander, Paul Bannih, Denis Baltin, Alexander Kazantsev, Anton Trembach, Elizabeth Koksharova, Victor Kunshin, Natalia Zhavrid y Olga Vozisova. "Electric Power Systems Kit". Advanced Materials Research 1008-1009 (agosto de 2014): 1166–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1008-1009.1166.
Texto completoTesis sobre el tema "Modern power systems"
Rajkumar, Naganathy. "Novel algorithms for modern power systems". Thesis, City University London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390941.
Texto completoKryukova, N. V., Evgen Viktorovych Goncharov y I. V. Polyakov. "Modern monitoring systems of electric power lines". Thesis, NTU "KhPI", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38909.
Texto completoKamarudin, Syalwani. "Advanced Doherty power amplifier design for modern communication systems". Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/115269/.
Texto completoWang, Chun. "Methodologies and algorithms for fault locators in modern power systems". Thesis, University of the West of England, Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392859.
Texto completoShao, Jin. "Advanced Power Amplifiers Design for Modern Wireless Communication". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804973/.
Texto completoDong, Zhao Yang. "Advanced methods for small signal stability analysis and control in modern power systems". Phd thesis, School of Electrical and Information Engineering, Graduate School of Engineering, 1998. http://hdl.handle.net/2123/6416.
Texto completoYuan, Lin. "Design space re-engineering for power minimization in modern embedded systems". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3651.
Texto completoThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wang, Longfei. "High Performance Distributed On-Chip Voltage Regulation for Modern Integrated Systems". Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7590.
Texto completoChevalier, Samuel Chapman. "Inference, estimation, and prediction for stable operation of modern electric power systems". Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130842.
Texto completoCataloged from the official PDF of thesis.
Includes bibliographical references (pages 261-277).
To keep pace with social-ecological disruptions and technological progressions, electrical power systems must continually adapt. In order to address the stability-related challenges associated with these adaptations, this thesis develops a set of analytically rigorous yet practically oriented methods for ensuring the continued stability of modern power systems. By leveraging inference, estimation, and predictive modeling techniques, the proposed methods capitalize on the unprecedented amount of real time data emerging from modernizing smart grids. For each method, we provide simulated test results from IEEE benchmark systems. Newly deployed Phasor Measurement Units (PMUs) are observing the presence of detrimental low frequency forced oscillations (FOs) in transmission grid networks. To begin this thesis, we address the problem of locating the unknown sources of these FOs.
To perform source identification, we develop an equivalent circuit transformation which leverages suitably constructed transfer functions of grid elements. Since FO sources appear in this equivalent circuit as independent current injections, a Bayesian framework is applied to locate the most probable source of these injections. Subsequently, we use our equivalent circuit to perform a systematic investigation of energy-based source identification methods. We further leverage this equivalent circuit transformation by developing "plug-and-play" stability standards for microgrid networks that contain uncertain loading configurations. As converter-based technology declines in cost, microgrids are becoming an increasingly feasible option for expanding grid access. Via homotopic parameterization of the instability drivers in these tightly regulated systems, we identify a family of rotational functions which ensure that no eigenmodes can be driven unstable.
Any component which satisfies the resulting standards can be safely added to the network, thus allowing for plug-and-play operability. High-fidelity linearized models are needed to perform both FO source identification and microgrid stability certification. Furthermore, as loss of inertia and real-time observability of grid assets accelerate in tandem, real-time linearized modeling is becoming an increasingly useful tool for grid operators. Accordingly, we develop tools for performing real-time predictive modeling of low frequency power system dynamics in the presence of ambient perturbations. Using PMU data, we develop a black-box modeling procedure, known as Real-Time Vector Fitting (RTVF), that takes explicit account for initial state decay and concurrently active input signals. We then outline a proposed extension, known as stochastic-RTVF, that accounts for the corrupting effects of unobservable stochastic inputs.
The surrogate modeling utilized by vector fitting can also be applied to the steady state power flow problem. Due to an unprecedented deployment of distributed energy resources, operational uncertainty in electrical distribution networks is increasing dramatically. To address this challenge, we develop methodology for speeding up probabilistic power flow and state estimation routines in distribution networks. We do so by exploiting the inherently low-rank nature of the voltage profile in these systems. The associated algorithms dynamically generate a low-dimensional subspace which is used to construct a projection-based reduced order model (ROM) of the full nonlinear system. Future system solves using this ROM are highly efficient.
by Samuel Chapman Chevalier.
Ph. D. in Mechanical Engineering and Computation
Ph.D.inMechanicalEngineeringandComputation Massachusetts Institute of Technology, Department of Mechanical Engineering
Phung, James Hon-Hoe. "Power Modeling in Modern Server Systems: An Examination of Various Novel Approaches". Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21376.
Texto completoLibros sobre el tema "Modern power systems"
Wang, Xi-Fan, Yonghua Song y Malcolm Irving. Modern Power Systems Analysis. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-72853-7.
Texto completoModern power system analysis. Boca Raton: CRC Press, 2013.
Buscar texto completoModern power system analysis. New York: Wiley, 1988.
Buscar texto completo1936-, Wang X. y McDonald J. R. 1937-, eds. Modern power system planning. London: McGraw-Hill, 1994.
Buscar texto completoKumar, Jitendra, Manoj Tripathy y Premalata Jena, eds. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0193-5.
Texto completoDebs, Atif S. Modern Power Systems Control and Operation. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0.
Texto completoSong, Yong-Hua, ed. Modern Optimisation Techniques in Power Systems. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9189-8.
Texto completoMariani, E. y S. S. Murthy. Control of Modern Integrated Power Systems. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8.
Texto completoDebs, A. S. Modern power systems control and operation. Boston: Kluwer Academic Publishers, 1988.
Buscar texto completoKumar, Jitendra, Manoj Tripathy y Premalata Jena, eds. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7788-6.
Texto completoCapítulos de libros sobre el tema "Modern power systems"
Patrick, Dale R., Stephen W. Fardo y Brian W. Fardo. "Modern Power Systems". En Electrical Power Systems Technology, 89–124. 4a ed. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003207429-6.
Texto completoZhang, Boming, Wenchuan Wu y Chuanlin Zhao. "A MAS-Based Cluster Computing Platform for Modern EMS". En Power Systems, 101–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32683-7_4.
Texto completoWang, Weikang, Kaiqi Sun, Chujie Zeng, Chang Chen, Wei Qiu, Shutang You y Yilu Liu. "Information and Communication Infrastructures in Modern Wide-Area Systems". En Power Systems, 71–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54275-7_3.
Texto completoErlbacher, Tobias. "Modern MOS-Based Power Device Technologies in Integrated Circuits". En Power Systems, 75–103. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00500-3_5.
Texto completoDaneshvar, Mohammadreza, Somayeh Asadi y Behnam Mohammadi-Ivatloo. "Energy Trading Possibilities in the Modern Multi-Carrier Energy Networks". En Power Systems, 175–214. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_5.
Texto completoKhan, Asad Ali y Omar A. Beg. "Cyber Vulnerabilities of Modern Power Systems". En Power Systems Cybersecurity, 47–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20360-2_2.
Texto completoRuan, Da. "Modern Approaches and Advanced Applications for Plant Surveillance and Diagnostics: An Overview". En Power Systems, 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04945-7_1.
Texto completoDaneshvar, Mohammadreza, Somayeh Asadi y Behnam Mohammadi-Ivatloo. "Mathematical Modeling and Uncertainty Management of the Modern Multi-Carrier Energy Networks". En Power Systems, 215–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_6.
Texto completoDebs, Atif S. "Power Flow Optimization". En Modern Power Systems Control and Operation, 153–202. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0_5.
Texto completoBouhouras, Aggelos S., Paschalis A. Gkaidatzis y Dimitris P. Labridis. "Network Reconfiguration in Modern Power Distribution Networks". En Energy Systems, 219–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36115-0_7.
Texto completoActas de conferencias sobre el tema "Modern power systems"
Chen, Z. "Power Electronics in Modern Power Systems". En 2022 9th International Conference on Power Electronics Systems and Applications (PESA). IEEE, 2022. http://dx.doi.org/10.1109/pesa55501.2022.10038350.
Texto completoSzablicki, M., P. Rzepka, A. Halinka y P. Sowa. "Diagnosis of challenges for power system protection – selected aspects of transformation of power systems". En 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9394979.
Texto completoBulatov, Yuri, Andrey Kryukov y Konstantin Suslov. "Application of Power Routers in Standalone Power Systems". En 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9395000.
Texto completoTavakoli, Mohamad Reza, Vahid Rasouli y Sahar Allahkaram. "A new design of double input power system stabilizers using SQP for interconnected power systems". En 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477175.
Texto completoKOKSAL, Aysun, Aydogan OZDEMIR y Joydeep MITRA. "A reliability-transient stability analysis of power systems for protection system conditions". En 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9395040.
Texto completoBiczel, Piotr, Andrzej Jasinski y Jacek Lachecki. "Power Electronic Devices in Modern Power Systems". En EUROCON 2007 - The International Conference on "Computer as a Tool". IEEE, 2007. http://dx.doi.org/10.1109/eurcon.2007.4400220.
Texto completoRoutray, Sudhir K., Abhishek Javali, Anindita Sahoo, Laxmi Sharma, K. P. Sharmila y Aritri D. Ghosh. "IoT Assisted Power Electronics for Modern Power Systems". En 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2021. http://dx.doi.org/10.1109/icirca51532.2021.9544584.
Texto completoBlaabjerg, Frede y Saeed Peyghami. "Reliability of Modern Power Electronic-based Power Systems". En 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). IEEE, 2021. http://dx.doi.org/10.23919/epe21ecceeurope50061.2021.9570595.
Texto completoGubanski, Adam, Pawel Kostyla, Beata Kredenc, Zbigniew Leonowicz, Jacek Rezmer y Tomasz Sikorski. "Synchronized profiles of power quality parameters in assessment of disturbances in power systems with distributed generation". En 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477201.
Texto completoHalinka, A., P. Rzepka y M. Szablicki. "Agent model of multi-agent system for area power system protection". En 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477185.
Texto completoInformes sobre el tema "Modern power systems"
Gurieiev, Viktor, Yulii Kutsan, Anna Iatsyshyn, Andrii Iatsyshyn, Valeriia Kovach, Evgen Lysenko, Volodymyr Artemchuk y Oleksandr Popov. Simulating Systems for Advanced Training and Professional Development of Energy Specialists in Power Sector. [б. в.], noviembre de 2020. http://dx.doi.org/10.31812/123456789/4456.
Texto completoStenclik, Derek, Aaron Bloom, Wesley Cole, Armando Figueroa Acevedo, Gord Stephen y Aidan Touhy. Redefining Resource Adequacy for Modern Power Systems: A Report of the Redefining Resource Adequacy Task Force. Office of Scientific and Technical Information (OSTI), enero de 2021. http://dx.doi.org/10.2172/1961567.
Texto completoBuchanan, Ben. The AI Triad and What It Means for National Security Strategy. Center for Security and Emerging Technology, agosto de 2020. http://dx.doi.org/10.51593/20200021.
Texto completoEdenburn, M. W. Models for multimegawatt space power systems. Office of Scientific and Technical Information (OSTI), junio de 1990. http://dx.doi.org/10.2172/6252925.
Texto completoWorhach, Paul. Power Systems Financial Model User's Guide. Office of Scientific and Technical Information (OSTI), mayo de 2011. http://dx.doi.org/10.2172/1601965.
Texto completoSoummane, Salaheddine, Amro Elshurafa, Hatem Al Atawi y Frank Felder. Cross-seasonal Fuel Savings from Load Shifting in the Saudi Industrial Sector. King Abdullah Petroleum Studies and Research Center, abril de 2022. http://dx.doi.org/10.30573/ks--2022-dp01.
Texto completoOlsen y Willson. L51916 Pressure Based Parametric Emission Monitoring Systems (PEMS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2002. http://dx.doi.org/10.55274/r0010181.
Texto completoBienstock, Daniel. RECONFIGURING POWER SYSTEMS TO MINIMIZE CASCADING FAILURES: MODELS AND ALGORITHMS. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1127329.
Texto completoSoummane, Salaheddine y Frédéric Ghersi. Projecting Saudi Sectoral Electricity Demand in 2030 Using a Computable General Equilibrium Model. King Abdullah Petroleum Studies and Research Center, septiembre de 2021. http://dx.doi.org/10.30573/ks--2021-dp12.
Texto completoDobson, Ian, Ian Hiskens, Jeffrey Linderoth y Stephen Wright. ARRA: Reconfiguring Power Systems to Minimize Cascading Failures - Models and Algorithms. Office of Scientific and Technical Information (OSTI), diciembre de 2013. http://dx.doi.org/10.2172/1110645.
Texto completo