Tesis sobre el tema "Models of generalized estimating equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Models of generalized estimating equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Alnaji, Lulah A. "Generalized Estimating Equations for Mixed Models". Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1530292694012892.
Texto completoHuang, Danwei. "Robustness of generalized estimating equations in credibility models". Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38842312.
Texto completoHuang, Danwei y 黃丹薇. "Robustness of generalized estimating equations in credibility models". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38842312.
Texto completoCai, Jianwen. "Generalized estimating equations for censored multivariate failure time data /". Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/9581.
Texto completoJang, Mi Jin. "Working correlation selection in generalized estimating equations". Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2719.
Texto completoClark, Seth K. "Model Robust Regression Based on Generalized Estimating Equations". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/26588.
Texto completoPh. D.
Akanda, Md Abdus Salam. "A generalized estimating equations approach to capture-recapture closed population models: methods". Doctoral thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/18297.
Texto completoCao, Jiguo. "Generalized profiling method and the applications to adaptive penalized smoothing, generalized semiparametric additive models and estimating differential equations". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102483.
Texto completoFirst, penalized smoothing is extended by allowing for a functional smoothing parameter, which is adaptive to the geometry of the underlying curve, which is called adaptive penalized smoothing. In the first level of optimization, the smooth ing coefficients are local parameters, estimated by minimizing sum of squared errors, conditional on the functional smoothing parameter. In the second level, the functional smoothing parameter is a complexity parameter, estimated by minimizing generalized cross-validation (GCV), treating the smoothing coefficients as explicit functions of the functional smoothing parameter. Adaptive penalized smoothing is shown to obtain better estimates for fitting functions and their derivatives.
Next, the generalized semiparametric additive models are estimated by three levels of optimization, allowing response variables in any kind of distribution. In the first level, the nonparametric functional parameters are nuisance parameters, estimated by maximizing the regularized likelihood function, conditional on the linear coefficients and the smoothing parameter. In the second level, the linear coefficients are structural parameters, estimated by maximizing the likelihood function with the nonparametric functional parameters treated as implicit functions of linear coefficients and the smoothing parameter. In the third level, the smoothing parameter is a complexity parameter, estimated by minimizing the approximated GCV with the linear coefficients treated as implicit functions of the smoothing parameter. This method is applied to estimate the generalized semiparametric additive model for the effect of air pollution on the public health.
Finally, parameters in differential equations (DE's) are estimated from noisy data with the generalized profiling method. In the first level of optimization, fitting functions are estimated to approximate DE solutions by penalized smoothing with the penalty term defined by DE's, fixing values of DE parameters. In the second level of optimization, DE parameters are estimated by weighted sum of squared errors, with the smoothing coefficients treated as an implicit function of DE parameters. The effects of the smoothing parameter on DE parameter estimates are explored and the optimization criteria for smoothing parameter selection are discussed. The method is applied to fit the predator-prey dynamic model to biological data, to estimate DE parameters in the HIV dynamic model from clinical trials, and to explore dynamic models for thermal decomposition of alpha-Pinene.
Liu, Fangda y 刘芳达. "Two results in financial mathematics and bio-statistics". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46976437.
Texto completoZheng, Xueying y 郑雪莹. "Robust joint mean-covariance model selection and time-varying correlation structure estimation for dependent data". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50899703.
Texto completopublished_or_final_version
Statistics and Actuarial Science
Doctoral
Doctor of Philosophy
Brady, Kaitlyn. "Learning Curves in Emergency Ultrasonography". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/1150.
Texto completoDeng, Wei. "Multiple imputation for marginal and mixed models in longitudinal data with informative missingness". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126890027.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xiii, 108 p.; also includes graphics. Includes bibliographical references (p. 104-108). Available online via OhioLINK's ETD Center
Campbell, David Alexander. "Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103368.
Texto completoIn this work, two competing methods, generalized profile estimation and Bayesian collocation tempering are described. Both of these methods use a basis expansion to approximate the ODE solution in the likelihood, where the shape of the basis expansion, or data smooth, is guided by the ODE model. This approximation to the ODE, smooths out the likelihood surface, reducing restrictions on parameter movement.
Generalized Profile Estimation maximizes the profile likelihood for the ODE parameters while profiling out the basis coefficients of the data smooth. The smoothing parameter determines the balance between fitting the data and the ODE model, and consequently is used to build a parameter cascade, reducing the dimension of the estimation problem. Generalized profile estimation is described with under a constraint to ensure the smooth follows known behaviour such as monotonicity or non-negativity.
Bayesian collocation tempering, uses a sequence posterior densities with smooth approximations to the ODE solution. The level of the approximation is determined by the value of the smoothing parameter, which also determines the level of smoothness in the likelihood surface. In an algorithm similar to parallel tempering, parallel MCMC chains are run to sample from the sequence of posterior densities, while allowing ODE parameters to swap between chains. This method is introduced and tested against a variety of alternative Bayesian models, in terms of posterior variance and rate of convergence.
The performance of generalized profile estimation and Bayesian collocation tempering are tested and compared using simulated data sets from the FitzHugh-Nagumo ODE system and real data from nylon production dynamics.
Li, Daoji. "Empirical likelihood and mean-variance models for longitudinal data". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/empirical-likelihood-and-meanvariance-models-for-longitudinal-data(98e3c7ef-fc88-4384-8a06-2c76107a9134).html.
Texto completoGreen, Brittany. "Ultra-high Dimensional Semiparametric Longitudinal Data Analysis". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1593171378846243.
Texto completoKurusu, Ricardo Salles. "Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21062013-202727/.
Texto completoConditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
Venezuela, Maria Kelly. ""Modelos lineares generalizados para análise de dados com medidas repetidas"". Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07072006-122612/.
Texto completoIn this work, we consider the generalized estimation equations developed by Liang and Zeger (1986) focusing the theory of estimating functions presented by Godambe (1991). These estimation equations are an extension of generalized linear models (GLMs) to the analysis of repeated measurements. We present an iterative procedure to estimate the regression parameters as well as hypothesis testing of these parameters. For the residual analysis, we generalize to repeated measurements some diagnostic methods available for GLMs. The half-normal probability plot with a simulated envelope is useful for diagnosing model inadequacy and detecting outliers. To obtain this plot, we consider an algorithm for generating a set of nonnegatively correlated variables having a specified correlation structure. Finally, the theory is applied to real data sets.
Qi, Xin. "Socio-environmental factors and suicide in Queensland, Australia". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/30317/1/Xin_Qi_Thesis.pdf.
Texto completoQi, Xin. "Socio-environmental factors and suicide in Queensland, Australia". Queensland University of Technology, 2009. http://eprints.qut.edu.au/30317/.
Texto completoMenarin, Vinicius. "Modelos estatísticos para dados politômicos nominais em estudos longitudinais com uma aplicação à área agronômica". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-19042016-091641/.
Texto completoStudies where the response is a categorical variable are quite common in many fields of Sciences. In many situations this response is composed by more than two unordered categories characterizing a nominal polytomous outcome and, in general, the aim of the study is to associate the probability of occurrence of each category to the effects of variables. Furthermore, there are special types of study where many measurements are taken over the time for the same sampling unit, called longitudinal studies. Such studies require special statistical models that consider some kind of structure that support the dependence that tends to arise from the repeated measurements for the same sampling unit. This work focuses on two extensions of the baseline-category logit model usually employed in cases when there is a nominal polytomous response with independent observations. The first one consists in a modification of the well-known generalized estimating equations for longitudinal data based on local odds ratios to describe the dependence between the levels of the response over the repeated measurements. This type of model is also known as a marginal model. The second approach adds random effects to the linear predictor of the baseline-category logit model, which also considers a dependence between the observations. This characterizes a baseline-category mixed model. There are substantial differences inherent to interpretations when marginal and mixed models are compared, what should be considered in the choice of the most appropriated approach for each situation. Both methodologies are applied to the data of an agronomic experiment installed under a complete randomized block design with a factorial arrangement for the treatments. It was carried out over six seasons, characterizing the longitudinal structure, and the response is the type of vegetation observed in field (tussocks, weeds or regions with bare ground). The results are satisfactory, even if the dependence found in data is not so strong, and likelihood-ratio and Wald tests point to several differences between treatments. Moreover, due to methodological differences between the two approaches, the marginal model based on generalized estimating equations seems to be more appropriate for this data.
Wang, Shin Cheng. "Analysis of Zero-Heavy Data Using a Mixture Model Approach". Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30357.
Texto completoPh. D.
Carter, Megan Ann. "Do Childhood Excess Weight and Family Food Insecurity Share Common Risk Factors in the Local Environment? An Examination Using a Quebec Birth Cohort". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23801.
Texto completoRodrigues, José Tenylson Gonçalves. "Análise de dados longitudinais para variáveis binárias". Universidade Federal de São Carlos, 2009. https://repositorio.ufscar.br/handle/ufscar/4531.
Texto completoFinanciadora de Estudos e Projetos
The objective of this work is to present techniques of regression analysis for longitudinal data when the response variable is binary. Initially, there is a review of generalized linear models, marginal models, transition models, mixed models, and logistic regression methods of estimation, which will be necessary for the development of work. In addition to the methods of estimation, some structures of correlation will be studied in an attempt to capture the intra-individual serial dependence over time. These methods were applied in two situations, one where the response variable is continuous and normal distribution, and another when the response variable has the Bernoulli distribution. It was also sought to explore and present techniques for selection of models and diagnostics for the two cases. Finally, an application of the above methodology will be presented using a set of real data.
O objetivo deste trabalho é apresentar técnicas de análise de regressão para dados longitudinais quando a variável resposta é binária. Inicialmente, é feita uma revisão sobre modelos lineares generalizados, modelos marginais, modelos de transição, modelos mistos, regressão logística e métodos de estimação, pois serão necessários para o desenvolvimento do trabalho. Além dos métodos de estimação, algumas estruturas de correlação serão estudadas, na tentativa de captar a dependência serial intra-indivíduo ao longo do tempo. Estes métodos foram aplicados em duas situações; uma quando a variável resposta é contínua, e se assume ter distribuição normal, e a outra quando a variável resposta assume ter distribuição de Bernoulli. Também se procurou pesquisar e apresentar técnicas de seleção de modelos e de diagnósticos para os dois casos. Ao final, uma aplicação com a metodologia pesquisada será apresentada utilizando um conjunto de dados reais.
Song, Hyunjin. "A Dynamic Longitudinal Examination of Social Networks and Political Behavior: The Moderating Effect of Local Network Properties and Its Implication for Social Influence Processes". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1427490761.
Texto completoMayo-Bruinsma, Liesha. "Family-centered Care Delivery: Comparing Models of Primary Care Service Delivery in Ontario". Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19952.
Texto completoZhang, Xiaohong. "Generalized estimating equations for clustered survival data". [Ames, Iowa : Iowa State University], 2006.
Buscar texto completoZhao, Chen. "Evaluating Health Policy Effect with Generalized Linear Model and Generalized Estimating Equation Model". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586377218891854.
Texto completoChen, I.-Chen. "Improved Methods and Selecting Classification Types for Time-Dependent Covariates in the Marginal Analysis of Longitudinal Data". UKnowledge, 2018. https://uknowledge.uky.edu/epb_etds/19.
Texto completoSepato, Sandra Moepeng. "Generalized linear mixed model and generalized estimating equation for binary longitudinal data". Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/43143.
Texto completoDissertation (MSc)--University of Pretoria, 2014.
lk2014
Statistics
MSc
Unrestricted
Hua, Lei. "Spline-based sieve semiparametric generalized estimating equation for panel count data". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/517.
Texto completoBarbosa, Luciano [UNESP]. "Metodologias estatísticas na análise de germinação de sementes de mamona". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/101848.
Texto completoÉ bastante comum na área agrícola, experimentos cujas variáveis respostas são contagens ou proporções. Para esse tipo de dados, utiliza-se a metodologia de modelos lineares generalizados quando as respostas são independentes. Por outro lado, quando as respostas são dependentes, há uma correlação entre as observações e isso tem que ser levado em consideração na análise, para evitar inferências incorretas sobre os coeficientes de regressão. Na literatura há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. No presente trabalho, utiliza-se a metodologia de equação de estimação generalizada, que inclui no modelo uma matriz de correlação para a obtenção de um melhor ajuste. Outra alternativa, também abordada neste trabalho, é a utilização de um modelo linear generalizado misto, no qual o uso de efeitos aleatórios também introduz uma correlação entre observações que tenham algum efeito em comum. Essas duas metodologias são aplicadas a um conjunto de dados obtidos de um experimento para avaliar certas condições na germinação de sementes de mamona da cultivar AL Guarany 2002, com o objetivo de se verificar qual o melhor modelo de estimação para esses dados
Experiments whose response variables are counts or proportions are very common in agriculture. For this type of data, if the observational units are independent, the methodology of generalized linear models can be appropriate. On the other hand, when responses are dependent or clustered, there is a correlation between the observations and that has to be taken into consideration in the analysis to avoid incorrect inferences about the regression coefficients. In the literature there are techniques available for modeling and analyzing such type data, the models being extensions of generalized linear models. The present study explores the use of: 1) generalized estimation equations, that includes a correlation matrix to obtain a better fit; 2) generalized linear mixed models, that introduce a correlation between clustered observations though the addition of random effects in the model. These two methodologies are applied to a data set obtained from an experiment to evaluate certain conditions on the germination of seeds of castor bean cultivar AL Guarany 2002 with the objective of determining the best estimation model for such data
Barbosa, Luciano 1971. "Metodologias estatísticas na análise de germinação de sementes de mamona /". Botucatu : [s.n.], 2010. http://hdl.handle.net/11449/101848.
Texto completoBanca: Liciana Vaz da Arruda
Banca: Osmar Delmanto Junior
Banca: Célia Regina Lopes Zimback
Banca: Marli Teixeira de A. Minhoni
Resumo: É bastante comum na área agrícola, experimentos cujas variáveis respostas são contagens ou proporções. Para esse tipo de dados, utiliza-se a metodologia de modelos lineares generalizados quando as respostas são independentes. Por outro lado, quando as respostas são dependentes, há uma correlação entre as observações e isso tem que ser levado em consideração na análise, para evitar inferências incorretas sobre os coeficientes de regressão. Na literatura há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. No presente trabalho, utiliza-se a metodologia de equação de estimação generalizada, que inclui no modelo uma matriz de correlação para a obtenção de um melhor ajuste. Outra alternativa, também abordada neste trabalho, é a utilização de um modelo linear generalizado misto, no qual o uso de efeitos aleatórios também introduz uma correlação entre observações que tenham algum efeito em comum. Essas duas metodologias são aplicadas a um conjunto de dados obtidos de um experimento para avaliar certas condições na germinação de sementes de mamona da cultivar AL Guarany 2002, com o objetivo de se verificar qual o melhor modelo de estimação para esses dados
Abstract: Experiments whose response variables are counts or proportions are very common in agriculture. For this type of data, if the observational units are independent, the methodology of generalized linear models can be appropriate. On the other hand, when responses are dependent or clustered, there is a correlation between the observations and that has to be taken into consideration in the analysis to avoid incorrect inferences about the regression coefficients. In the literature there are techniques available for modeling and analyzing such type data, the models being extensions of generalized linear models. The present study explores the use of: 1) generalized estimation equations, that includes a correlation matrix to obtain a better fit; 2) generalized linear mixed models, that introduce a correlation between clustered observations though the addition of random effects in the model. These two methodologies are applied to a data set obtained from an experiment to evaluate certain conditions on the germination of seeds of castor bean cultivar AL Guarany 2002 with the objective of determining the best estimation model for such data
Doutor
Badinger, Harald y Cuaresma Jesus Crespo. "Aggregravity: estimating gravity models from aggregate data". Taylor & Francis, 2015. http://dx.doi.org/10.1080/00036846.2014.1002903.
Texto completoBadinger, Harald y Cuaresma Jesus Crespo. "Aggregravity: Estimating Gravity Models from Aggregate Data". WU Vienna University of Economics and Business, 2014. http://epub.wu.ac.at/4295/1/wp183.pdf.
Texto completoSeries: Department of Economics Working Paper Series
Shin, Janey. "Evaluation of candidate genes in family studies, generalized estimating equations and bootstrap approaches". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ40723.pdf.
Texto completoBrewer, Ciara. "Using generalized estimating equations with regression splines to improve analysis of butterfly transect data /". St Andrews, 2008. http://hdl.handle.net/10023/488.
Texto completoSagara, Issaka. "Méthodes d'analyse statistique pour données répétées dans les essais cliniques : intérêts et applications au paludisme". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5081/document.
Texto completoNumerous clinical studies or control interventions were done or are ongoing in Africa for malaria control. For an efficient control of this disease, the strategies should be closer to the reality of the field and the data should be analyzed appropriately. In endemic areas, malaria is a recurrent disease. Repeated malaria episodes are common in African. However, the literature review indicates a limited application of appropriate statistical tools for the analysis of recurrent malaria data. We implemented appropriate statistical methods for the analysis of these data We have also studied the repeated measurements of hemoglobin during malaria treatments follow-up in order to assess the safety of the study drugs by pooling data from 13 clinical trials.For the analysis of the number of malaria episodes, the negative binomial regression has been implemented. To model the recurrence of malaria episodes, four models were used: i) the generalized estimating equations (GEE) using the Poisson distribution; and three models that are an extension of the Cox model: ii) Andersen-Gill counting process (AG-CP), iii) Prentice-Williams-Peterson counting process (PWP-CP); and (iv) the shared gamma frailty model. For the safety analysis, i.e. the assessment of the impact of malaria treatment on hemoglobin levels or the onset of anemia, the generalized linear and latent mixed models (GLLAMM) has been implemented. We have shown how to properly apply the existing statistical tools in the analysis of these data. The prospects of this work remain in the development of guides on good practices on the methodology of the preparation and analysis and storage network for malaria data
Liu, Danping. "Semiparametric methods in generalized linear models for estimating population size and fatality rate". Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B36164598.
Texto completoLiu, Danping y 劉丹平. "Semiparametric methods in generalized linear models for estimating population size and fatality rate". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36164598.
Texto completoValois, Marie-France. "Evaluation of the performance of the generalized estimating equations method for the analysis of crossover designs". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29805.pdf.
Texto completoMacNeill, Stephanie Jan. "A statistical analysis of the recurrence of gestational diabetes by logistic regression and generalized estimating equations". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0008/MQ36504.pdf.
Texto completoWang, Liangliang. "Estimating nonlinear mixed-effects models by the generalized profiling method and its application to pharmacokinetics". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18424.
Texto completoIl n'y a aucune solution de exacte pour beaucoup de modèles non-linéaires à effets mixtes (NLME) exprimés comme un ensemble d'équations ordinaires (ODE) en modèles de compartiment. Cette thèse passe en revue plusieurs méthodes et outils courants de logiciel pour NLME, et explore une nouvelle manière d'estimer des effets mixtes non-linéaires en modèles de compartiment basée sur le cadre de la méthode de profilage généralisée proposée par Ramsay, Hooker, Campbell, et Cao (2007). Quatre types de paramètres sont identifiés et estimés d'en cascade par une optimisation de multiple-niveau: le paramètre regularisateur est choisi par le critère de la contre-vérification généralisée (GCV); les paramètres structuraux, y compris les effets fixes, la matrice de variance-covariance pour les effets aléatoires, et la variance résiduelle sont optimisés par un critère basé sur une expansion de premier ordre de Taylor de fonction non-linéaire ; les effets aléatoires sont optimisés par une methode des moindres carrés non-linéaires pénalisés ; et les coefficients d'expansions de fonction de base sont optimisés par un lissage pénalisé avec la pénalité définie par l'equation differentielle. En conséquence, certains des paramètres sont exprimés en tant que fonctions explicites ou implicites d'autres paramètres. La dimensionnalité de l'espace des paramètres est réduite, et la surface d'optimisation devient plus lisse. L'algorithme de Newton-Raphson est appliqué aux paramètres d'évaluation pour chaque niveau d'optimisation, où le théorème des fonctions implicites est employé couramment pour établir les gradients et les matrices de Hessiennes de facon analytiques. La méthode proposée et des codes de MATLAB sont examinés par des applications à plusieurs modèles de compartiment en pharmacocinétique sur des donnees simulées et vraies. Des résultats sont comparés aux valeurs ou aux évaluations vraies obtenues pa
Venezuela, Maria Kelly. "Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/.
Texto completoBased on the concept of optimum linear estimating equation (Crowder, 1987), we develop generalized estimating equation (GEE) to analyze longitudinal data considering marginal beta regression models (Ferrari and Cribari-Neto, 2004). The GEEs are also presented to marginal simplex models for longitudinal continuous proportional data proposed by Song and Tan (2000) and Song et al. (2004) and to generalized linear models for longitudinal data based on the proposes of Artes and J$\\phi$rgensen (2000) and Liang and Zeger (1986). All of them are developed focusing the assumption of homogeneous dispersion and with varying dispersion. For the diagnostic techniques, we generalize some diagnostic measures for estimating equations to model the position parameter considering an homogeneous dispersion parameter and for joint modelling of position and dispersion parameters to take in account a possible heterogeneous dispersion. Among these measures, we point out the local influence (Cook, 1986) developed to estimating equations. This measure can correctly show influential observations in simulation study. Finally, the theory is applied to real data sets.
Chatterjee, Nilanjan. "Semiparametric inference based on estimating equations in regression models for two phase outcome dependent sampling /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8959.
Texto completoSöderdahl, Fabian y Karl Hammarström. "Measuring the causal effect of air temperature on violent crime". Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243130.
Texto completoHans, Richard P. "Estimating the coefficients in a system of compatible growth and yield equations for Loblolly pine". Thesis, Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/94460.
Texto completoM.S.
Diaz, Pedro y Grant Skrepnek. "Marginal Tax Rates and Innovative Activity in the Biotech Sector". The University of Arizona, 2013. http://hdl.handle.net/10150/614244.
Texto completoSpecific Aims: To assess the association between marginal tax rates (MTR) and innovative output of biotechnology firms. The MTR plays an important role in firms’ financing choices. Assessment of a firm’s tax status may reveal how firms decide on investment policies that affect R&D. Methods: A retrospective database analysis was used. Subjects included were firms within the biotechnology sector with the Standard Industrial Classification code of 2836 from 1980 - 2011. MTR Data was obtained from the S&P Compustat database, and Patent data was obtained from the U.S. Patent and Trademark Office. Changes in MTR’s on outcomes of patents were analyzed by performing an inferential analysis. Generalized estimating equations (GEE) were used, specifically utilizing a GEE regression with a negative binomial distributional family with log link, independent correlation structure and robust standard error variance calculation. Patents were regressed by the lagged change in MTR, after interest deductions. Main Results: The lag years 2 and 5 of the MTR change were statistically significant, (p = 0.031) and (p = 0.026) for each model respectively. Every one unit increase in the change of the MTRs was associated with large and significant drops in patents 78.8% (IRR = 0.212), 90.7% (IRR = 0.093), 92.7% (IRR = 0.073) at year 2 lag and 84.8% (IRR = 0.152), 92.6% (IRR = 0.074) at year 5 lag. Conclusion: An increase in the change of the MTR results in significant drops in patenting activity.
Wang, Xuesong. "SAFETY ANALYSES AT SIGNALIZED INTERSECTIONS CONSIDERING SPATIAL, TEMPORAL AND SITE CORRELATION". Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3436.
Texto completoPh.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering
Cassely, Ludovic. "Essais sur la performance sociétale des entreprises dans un contexte international : une approche par la diversité des modèles de capitalisme". Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL2001.
Texto completoIn a global performance approach and in the face of the many challenges of the contemporary world, the company must reconcile the imperatives of profitability, sustainability and performance, but also become "virtuous" with respect to the world around it. This commitment implies constraints in terms of organization, respect for the environment, but also in relations with internal and external stakeholders and more generally with respect to society.In this context, the aim of the thesis is to identify, with the support of societal data provided by Vigéo-Eiris (longitudinal basis 2004-2015), the diversity of factors that can explain the dynamics of societal behaviour in the long term in an international context through belonging to a model of capitalism.With the support of a pluralistic theoretical framework, she tries to answer this objective through three research questions that will allow :- To identify the determinants of societal performance over the long term through a multi-level analysis ;- To measure the impact of the 2008 crisis on the level of societal performance of firms by analyzing the level of involvement of firms before, during and after this period ;- To assess the dynamics of long-term improvement in societal performance by comparing the results of the companies with the best societal ratings with those with lower ratings
Onnen, Nathaniel J. "Estimation of Bivariate Spatial Data". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1616243660473062.
Texto completo