Índice
Literatura académica sobre el tema "Modélisation des paléoclimats"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modélisation des paléoclimats".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Modélisation des paléoclimats"
Parrenin, Frédéric. "Datation glaciologique des forages profonds en Antarctique et modélisation conceptuelle des paléoclimats : implications pour la théorie astronomique des paléoclimats". Phd thesis, Université Joseph Fourier (Grenoble), 2002. http://tel.archives-ouvertes.fr/tel-00701456.
Texto completoMadeleine, Jean-Baptiste. "Nuages et poussières de l'atmosphère martienne : télédétection, modélisation des rétroactions climatiques et application aux paléoclimats". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00691313.
Texto completoGarreta, Vincent. "Approche bayésienne de la reconstruction des paléoclimats à partir du pollen : Vers la modélisation des mécanismes écologiques". Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2010. http://tel.archives-ouvertes.fr/tel-00495890.
Texto completoSicard, Marie. "Modéliser les évolutions du climat de l'Arctique et de la calotte groenlandaise pendant le dernier interglaciaire pour en comprendre les mécanismes". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASJ017.
Texto completoThe Last Interglacial (129 -116 ka BP) is one of the warmest periods in the last 800 ka at many locations. This period is characterized by a strong orbital forcing leading to a different seasonal and latitudinal distribution of insolation compared to today. These changes in insolation result in a temperature increase in the high latitudes of the Northern Hemisphere and a rise in sea level of 6 to 9 m above present. Therefore, the Last Interglacial represents a good case study given the risks of melting ice sheets under the influence of current and future warming. It is also an opportunity to identify and quantify the mechanisms causing polar amplification in a warmer climate than today.Within the framework of the CMIP6-PMIP4 model intercomparison project, I analyzed the lig127k snapshot run with the IPSL-CM6A-LR climate model. In the Arctic region (60-90°N), the insolation variations induce an annual warming of 0.9°C compared to the pre-industrial period (1850) reaching up to 4.0°C in autumn. Investigate changes in the Arctic energy budget relative to the pre-industrial period highlights the crucial roles of changes in the sea ice cover, ocean heat storage and clouds optical properties in the Last Interglacial Arctic warming.As a result of climate change over the Last Interglacial, the GRISLI ice sheet model simulates a Greenland ice loss of 10.7-57.1%, corresponding to a sea level rise of 0.83-4.35 m and a 0.2°C additional warming in the Arctic region. These estimates illustrate the crucial role of polar ice sheets in the climate system. To better assess ice sheet-climate feedbacks in the Arctic, I have therefore carried out a preliminary study using the ICOLMDZOR model that includes the new dynamical core DYNAMICO developed at the IPSL. This study shows that the use of high-resolution atmospheric fields improves the calculation of the surface mass balance in Greenland.Finally, the comparison between past and future Arctic energy budget reveals that the processes causing Arctic warming during the Last Interglacial and the near future are similar
Lhardy, Fanny. "Role of Southern Ocean sea ice on deep ocean circulation and carbon cycle at the Last Glacial Maximum". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASJ013.
Texto completoCompared to the present-day climate, the cold period of the Last Glacial Maximum was characterized by an expanded sea-ice cover in the Southern Ocean, a shoaled Atlantic deep ocean circulation and a lower atmospheric CO2 concentration. These changes are well-documented by indirect observations but difficult to represent in simulations of climate models. Indeed, these models tend to simulate a too high atmospheric CO2 concentration, a too deep Atlantic deep ocean circulation, and a sea-ice cover with a too circular distribution in the Southern Ocean and a too small winter extent and seasonal amplitude. The model-data discrepancies observed at the Last Glacial Maximum call into question the model representation of some important climate processes. Several studies have underlined the crucial role of the Southern Ocean sea ice on ocean carbon storage capacity and deep circulation. I have therefore focussed on this region to improve our understanding of the processes associated with this storage. Thanks to simulations performed with the Earth System Model iLOVECLIM, I have demonstrated thatthe uncertainties related to ice sheet reconstructions have a limited impact on the variables examined in this study. In contrast, other choices of boundary conditions (influencing the ocean volume and alkalinity adjustment) can yield large changes of carbon sequestration in the ocean. I also show that a simple parameterization of the sinking of brines consequent to sea-ice formation significantly improves the simulated Southern Ocean sea ice, deep ocean circulation and atmospheric CO2 concentration. A set of simulations including the effects of diverse ocean parameterizations is used to show that the too deep ocean circulation simulated by our model cannot be attributed to an insufficient sea-ice cover, whereas convection processes in the Southern Ocean seem crucial to improve both the Southern Ocean sea ice, the deep ocean circulation and the atmospheric CO2 concentration at the Last Glacial Maximum
Jost, Anne. "Caractérisation des forçages climatiques et géomorphologiques des cinq derniers millions d'années et modélisation de leurs conséquences sur un système aquifère complexe : le bassin de Paris". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00083869.
Texto completoCrichton, Katherine. "The role of permafrost soils in the global carbon-cycle on the timescales of centuries to multi-millennia : a modelling study". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU049/document.
Texto completoThis study aimed to develop a permafrost-carbon dynamic model to incorporate into the CLIMBER-2 Earth system model and to carry out simulations with a view to contributing to the knowledge of the carbon cycle. The work would, for the first time, allow a fully coupled modelling study with an earth system model which included dynamic atmosphere, ocean, vegetation and cryosphere components including frozen land to study paleoclimates. The availability of recent ice core data for CO2 and δ13C of atmospheric CO2 was to provide a means of validating model findings to identify whether a permafrost-carbon dynamic could have played a significant role in past changing climates.The deep Southern Ocean is an area of particular interest for glacial-interglacial CO2 variability, and current modelling efforts aim to recreate the observed CO2 changes using ocean mechanisms. These are often related to deep southern ocean carbon storage and release. So far the terrestrial biosphere has not been well-considered in transient simulations of the carbon cycle in Earth system models.A simplified permafrost-carbon mechanism was developed and validated and tuned using data from termination 1. It was found that in order to reproduce atmospheric CO2 and δ13C data (for atmosphere and ocean) during the termination, a combination of glacial ocean mechanisms and the permafrost-carbon mechanism was required. Following this finding, several glacial cycles were modelled to study the sensitivity of the permafrost-carbon mechanisms to CO2, ice sheets and insolation. Ice sheet extent was found to be particularly important in controlling the land area available for permafrost and therefore the carbon dynamics of permafrost-carbon. The permafrost-carbon mechanism, via carbon release from thawing soils responding to increasing summer insolation in higher northern latitudes, was found to very likely be the source of initial rises in CO2 on glacial terminations.Termination 1 CO2 data could be well reproduced, including the B-A/YD CO2 plateau, when fresh water forcing was applied to the north Atlantic. Fresh water forcing experiments pointed to the importance of the permafrost-carbon mechanism in fast changing climates. Very fast increases in atmospheric CO2 levels may be explained by fast soil-carbon release responding to increased heat transport to the northern hemisphere on AMOC resumption following an AMOC switch-off/reduction event, such as D/O events seen in the Greenland δ18O record. Future climate change projections represent fast warming events. Driving the model by emissions projections (RCP database) predicted increased peak CO2 and much longer term elevated CO2 levels relative to model outputs which did not include the permafrost carbon feedback.Analysis of ocean δ13C must take into account the dynamics of permafrost and land carbon in general and its effect on atmospheric δ13C levels. If this is not taken into account then ocean circulation may be over-invoked in attempting to explain changes in ocean δ13C and atmospheric CO2. The Earth system is not simply atmosphere and ocean. The findings in this work highlight that it is essential to consider land carbon dynamics when interpreting paleo-indicators for the carbon cycle.The permafrost-carbon mechanism reacts to temperature changes and amplifies the carbon cycle's response. It is stongly dependent not only on energy input (that determines soil temperature and permafrost location), but also on the area of land available globally on which it can exist. In order to properly model and understand the Earth system response to forcing in both future and past climates, the permafrost-carbon feedback mechanism is an important system component. This work has been a first step to address the role that the land cryosphere plays in the carbon cycle and climate system on long timescales, and further studies are essential
Bres, Julia. "Modéliser l’évolution des plantes à fleurs au Crétacé et leurs rétroactions avec le climat". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASJ001.
Texto completoDuring the Cretaceous period, the leaf evolution of flowering plants, or angiosperms, towards higher vein and stomata densities, suggests an unprecedented increase in stomatal conductance as well as evapotranspiration fluxes. However, these paleo-traits are not accounted for in vegetation models whose the aim is to evaluate the effects of evapotranspiration fluxes on the climate system. The purpose of this study is to simulate the stomatal conductance evolution of flowering plants through the Cretaceous period and assess their effects on interaction and feedback between climate and vegetation. By combining fossil data and empirical ecophysiological models, I develop an innovative parameterization of proto-angiosperm vegetation in the ORCHIDEE vegetation model which considers a reduction of both hydraulic and photosynthetic capacities. Thanks to the coupled atmosphere-vegetation model LMDZOR, I demonstrate that the radiation of flowering plants drives a strengthening of the hydrologic cycle and a decrease in surface temperature, the intensities of which are modulated by the atmospheric concentration of CO2. By activating the dynamic vegetation model, I show that flowering plant radiation triggers positive feedback loops in a context of decreasing atmospheric concentration of CO2 during the Cretaceous period: the increase in hydraulic and photosynthetic capacities of flowering plants constitutes a selective advantage compared to other types of plants by allowing them to (i) sustain their productivity, (ii) develop tropical forests and replace conifers in temperate and boreal forests and (iii) enhance precipitations, thus preventing water stress effects on their own development
Philippon, Gwenaëlle. "Rôle des calottes glaciaires dans le système climatique : Analyse des interactions entre un modèle de calotte de glace Antarctique et un modèle de climat". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00328184.
Texto completoBlanke, Raphaël. "Sédimentation organique profonde associée au système d'upwelling du courant du Benguela (Atlantique Sud-Est) : facteurs de contrôle à l'échelle de la marge au cours du Quaternaire". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00109828.
Texto completoderniers cycles climatiques : les teneurs y sont parmi les plus élevées du monde pour des sédiments océaniques
(de 5 à 18-20% à 1000 m de profondeur, de 0,5% à 8% à 3500 m). Ces accumulations sont liées à l'intense
activité des cellules d'upwelling associées au système du Courant du Benguela, elles-mêmes fonctions de
l'intensité des alizés circulant le long de la côte.
Une étude a été réalisée sur des carottes réparties le long de la marge, entre le Dernier Maximum Glaciaire
(DMG) et l'Optimum Climatique Holocène (OCH), dans le but de comprendre et contraindre les différents
facteurs à l'origine de cette importante sédimentation organique profonde. Les résultats acquis par différentes
méthodes (pyrolyse Rock-Eval, spectrométrie Infra Rouge à Transformée de Fourier, observation de lames de
palynofaciès...) montrent un enrichissement général du contenu organique des sédiments au DMG par rapport à
l'OCH. Cet enrichissement n'est pas homogène, et présente des valeurs maximales à l'aplomb des cellules
d'upwelling les plus actives (Lüderitz et Walvis Bay). Il existe une corrélation négative entre le pourcentage de
carbone organique total et celui des carbonates, due d'une part à la dilution de la matière organique par la
fraction minérale, et d'autre part à la dissolution des carbonates lors de la biodégradation de la matière
organique. La distribution de la silice biogène répond plus aux variations de facteurs externes plutôt qu'à la
productivité différentielle des cellules d'upwelling.
Les études optiques des constituants organiques ont permis l'identification de deux types de matière organique
amorphe : un type granulaire, floconneux, et un type gélifié. Le type gélifié est associé aux cellules les plus
actives (Lüderitz et Walvis Bay) et caractérisé par un processus de préservation par sulfuration naturelle, le type
granulaire, associé à un processus d'adsorption sur des particules argileuses, se rencontre au niveau des cellules
relativement moins actives.
Ces différents résultats mettent en évidence des modulations de l'enregistrement organique durant la transition
DMG/OCH, contrôlées par des processus internes et externes au système d'upwelling. Les deux paramètres
majeurs étant la variabilité de l'intensité de la productivité se développant dans la zone photique, et la migration
des dépôts lors de la transgression marine associée au réchauffement global. Les processus externes sont
principalement liés aux différents apports de masses d'eaux via le Nord (Courant d'Angola) et le Sud (Courant
des Aiguilles, Courant Antarctique Intermédiaire).
La détermination du potentiel pétrolier de ces sédiments montre que la zone de haute productivité de Lüderitz
peut potentiellement être à l'origine du dépôt de roches mères d'hydrocarbures parmi les plus productives au
monde.
Une comparaison avec un cycle de même nature mais plus ancien (Pléistocène) a été faite après l'étude d'une
carotte du leg ODP 175-1084. Les résultats acquis, complétés par des données sur les biomarqueurs, nous ont
permis de supposer un type de fonctionnement très différent de celui mis en évidence au Quaternaire terminal.
Celui-ci est associé au rôle prépondérant des apports détritiques dans la sédimentation organique et inorganique sur le site de Lüderitz au Pléistocène basal, ainsi qu'à l'existence d'un changement climatique majeur, caractérisé par un pic de productivité associé à des organismes siliceux (diatomées) puis carbonaté (coccolithes).