Literatura académica sobre el tema "Modélisation des écoulements multiphasiques"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modélisation des écoulements multiphasiques".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Modélisation des écoulements multiphasiques"
Momplot, Adrien, Gislain Lipeme Kouyi, Jean-Luc Bertrand-Krajewski, Emmanuel Mignot y Nicolas Riviere. "Modélisation tridimensionnelle des écoulements multiphasiques en régime instationnaire au droit d’ouvrages spéciaux présents en réseau d’assainissement : performances des modèles et analyse de sensibilité". La Houille Blanche, n.º 4 (agosto de 2013): 16–24. http://dx.doi.org/10.1051/lhb/2013028.
Texto completoDrouffe, J. M. y M. Bernicot. "Production polyphasique. Modélisation des écoulements à bouchons". Revue de l'Institut Français du Pétrole 44, n.º 5 (septiembre de 1989): 567–81. http://dx.doi.org/10.2516/ogst:1989033.
Texto completoMasson, Samuel, Dominique Désérable y Juan Martinez. "Modélisation des écoulements granulaires par automates cellulaires". Revue Française de Génie Civil 5, n.º 5 (agosto de 2001): 629–50. http://dx.doi.org/10.1080/12795119.2001.9692715.
Texto completoLaigle, Dominique y Philippe Coussot. "Modélisation numérique des écoulements de laves torrentielles". La Houille Blanche, n.º 3 (abril de 1994): 50–56. http://dx.doi.org/10.1051/lhb/1994043.
Texto completoRuyer, Pierre y Nathalie Seiler. "Modélisation avancée de la polydispersion en taille des écoulements bouillants". La Houille Blanche, n.º 4 (agosto de 2009): 65–71. http://dx.doi.org/10.1051/lhb/2009046.
Texto completoMimouni, S., A. Archer, J. Laviéville, M. Boucker y N. Méchitoua. "Modélisation et simulation des écoulements cavitants par une approche diphasique". La Houille Blanche, n.º 6 (diciembre de 2006): 121–28. http://dx.doi.org/10.1051/lhb:2006110.
Texto completoRavet, Frédéric, Christophe Baudoin y Jean-Luc Schultz. "Modélisation numérique des écoulements réactifs dans les foyers de turboréacteurs". Revue Générale de Thermique 36, n.º 1 (enero de 1997): 5–16. http://dx.doi.org/10.1016/s0035-3159(99)80061-0.
Texto completoAYADI, M. y Z. BARGAOUI. "Modélisation des écoulements de l'oued Miliane par le modèle CEQUEAU". Hydrological Sciences Journal 43, n.º 5 (octubre de 1998): 741–58. http://dx.doi.org/10.1080/02626669809492170.
Texto completoHieu, Ha Minh. "Modélisation et simulation des écoulements en situations industrielles. Exposé de synthèse". La Houille Blanche, n.º 7-8 (noviembre de 1987): 555–62. http://dx.doi.org/10.1051/lhb/1987046.
Texto completoRowe, A. "Etude synthétique du problème de la modélisation des écoulements partiellement cavitants". La Houille Blanche, n.º 7-8 (noviembre de 1988): 555–62. http://dx.doi.org/10.1051/lhb/1988050.
Texto completoTesis sobre el tema "Modélisation des écoulements multiphasiques"
Krimi, Abdelkader. "Modélisation des écoulements fluide multiphasiques avec une approche SPH". Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0004/document.
Texto completoSmoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed initially to simulate astrophysical phenomena, and since it has been known for a large number of applications, especially for fluid flow simulations. Contrary to the grid-based method, the SPH method can handle free surface and interfacial fluid flow simulation including large deformations naturally and without the need for any specific treatment. In this thesis a SPH modeling of multiphase fluid flows has been achieved with consideration of different complexities ( free surface and interfacial fluid flows) and natures (simulation of fluids, soil and both in interactions). A consistent weakly compressible SPH model (WCSPH) has been proposed to simulate interfacial multiphase fluid flows with more than two fluid phases. This model includes a new expression of the surface tension force using a first order consistency SPH operator. A modification to the well known generalized wall boundary condition have been brought in order to be applied to multiphase fluid flow with large density and viscosity ratios. A new pressure-based constitutive law named RBMC-αμ (Regularized Bingham Mohr Coulomb with αμ is free parameter) has been developed in this thesis. This model can simulate fluids (Newtonian, Binghamton), soils (cohesive, frictional) and both in interactions. Because the previous model is pressure sensitive, an extension of δ-SPH diffusive term has been proposed for multiphase fluid flows to overcome the hight frequency pressure oscillations due to the determination of pressure from an equation of state. The validation and application of the developed models have been shown in this thesis through several test-cases of increasing difficulty
Mecherbet, Amina. "Modélisation des fluides multiphasiques". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS036.
Texto completoThis thesis is devoted to the modelling and mathematical analysis of some aspects of suspension flows.The first chapter concerns the justification of the transport-Stokes equation describing the sedimentation of spherical rigid particles in a Stokes flow where particles rotation is taken into account and inertia is neglected. This work is an extension of former results for a more general set of particles configurations.The second chapter is dedicated to the sedimentation of clusters of particle pairs in a Stokes flow. The derived model is a transport-Stokes equation describing the time evolution of the position and orientation of the cluster. We also investigate the case where the orientation of the cluster is initially correlated to its position. A local existence and uniqueness result for the limit model is provided.In the third chapter, we propose a coupled fluid-kinetic model taking into accountthe radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects onthe particle behaviour. The air flow is described by the incompressibleNavier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term.The last chapter is dedicated to the analysis of the transport-Stokes equation derived in the first chapter. First we present a global existence and uniqueness result for L¹∩L^∞ initial densities with finite first moment. Secondly, we consider the case where the initial data is the characteristic function of a droplet. We present a local existence and uniqueness result for a regular parametrization of the droplet surface. Finally, we provide some numerical computations that show the regularity breakup of the droplet
Barberon, Thomas. "Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles". Toulon, 2002. http://www.theses.fr/2002TOUL0015.
Texto completoSzewc, Kamil. "Développement d'une approche particulaire de type SPH pour la modélisation des écoulements multiphasiques avec interfaces variables". Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0328/document.
Texto completoSmoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle based approach for fluid-flow simulations. One of its advantages over Eulerian techniques is no need of a numerical grid. Therefore, there is no necessity to handle the interface shape as it is done in Volume-of-Fluid, Lavel-Set or Front-Tracking methods. Thus, the SPH approach is increasingly used for hydro-engineering and geophysical applications involving free-surface flows where the natural treatment of evolving interfaces makes it an attractive method. However, for real-life multi-phase simulations this method has only started to be considered and many problems like a proper formulation or a spurious fragmentation of the interface remain to be solved. One of the aims of this work is to critically analyse the existing SPH variants and assess their suitability for complex multi-phase problems. For modelling the surface-tension phenomena the Continuum Surface Force (CSF) methods are validated and used. The natural convection phenomena are modeled using a new, more general formulation, beyond the Boussinesq approximation. A substantial part of the work is devoted to the problem of a spurious fragmentation of the interface (the micro-mixing of SPH particles). Its negative effects and possible remedies are extensively discussed and a new variant is proposed. Contrary to general opinion, it is proven that the micro-mixing is not only the problem of flows with neglegible surface tension. A significant part of this work is devoted to the modelling of bubbles rising through liquids, including bubble-bubble interactions. The SPH simulations were performed for several flow regimes corresponding to different relative importance of surface tension, viscosity and buoyancy effects. The predicted topological changes, bubble terminal velocity and drag coefficients were validated with respect to reference experimental data and compared to other numerical methods. In the work, fundamental concepts of assuring the incompressibility constraint in SPH are also recalled. An important part of work is a thorough comparison of two different incompressibility treatments: the weakly compressible approach, where a suitably chosen equation of state is used, and truly incompressible method (in two basic variants), where the velocity field is projected onto a divergence-free space. Their usefulness for multi-phase modelling is discussed. Problems associated with the numerical setup are investigated, and an optimal choice of the computational parameters is proposed and verified. For these purposes the study is supported by many two- and three-dimensional validation cases. In addition, the present work opens new perspectives to future simulations of boiling phenomena using the SPH method. First ideas and sketches for the implementation of the liquid-vapour phase change are presented
Marois, Gentien. "Modélisation eulérienne de l'interaction d'un brouillard avec un choc en régime supersonique". Thesis, Toulouse, INSA, 2018. http://www.theses.fr/2018ISAT0045/document.
Texto completoIn this thesis we focus on the interaction between a supersonic dilute flow and a detached shock. The Eulerian approach has been chosen because it is particularly adapted to parallel computing. A program named SDFS (Supersonic Dilute Flow Solver), was created and validated in a CEA aerodynamic code. Three aspects of the computational simulation have been studied. First the study and creation of new models. Then the numerical implementation and the validation through academic reference cases. Finally, the comparison between numerical results and experimental data
Le, maout Vincent. "Modélisation d'écoulements multiphasiques de fluides viscoélastiques en milieux poreux". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0161.
Texto completoViscoelastic multiphase flows in porous media are at the crossroad of many engineering sciences. Initiated with petroleum industry, their range of application is now extended to many additional areas, such as civil engineer-ing, geotechnics, composite impregnation and more recently life sciences. Mathematical formulations of these problems often rely on governing equations formulated directly at the macroscale, or are derived from micro-scopic considerations using upscaling technics. Generally, the second approach is prefered as it permits to estab-lish a clear connection between the scales of the porous media and to identify the restraining hypothesis neces-sary to the formulation of the equation system. However, when upscaling is performed, many unknown parameters remain to obtain a close set of equations, and additional closure relationships must be considered in order to find a solvable formulation. For the flows of interest, exhibiting multiphasic and viscoelastic properties, the usual macroscale empirical relations may be too inaccurate to capture relevantly the influence of underlying physics at play, and few experimental data allow characterising the missing parameters.A solution to this problem consists in performing numerical simulations at the microscale to extract missing information about media properties through microfluidic experiments in silico. To achieve this multi-scale modelling strategy, a pore scale model has been derived in this thesis for two applications of interest: improved oil recovery and tumor growth. The derivation of a unique model for these applications makes use of conservation equations at the microscale considered during upscaling operations. The obtained formulation allows a multiphase flow description by means of a phase-field method and the viscoelasticity of phases is introduced through the Oldroyd-B constitutive equation. The resulting mathematical model, implemented in a finite element code, permits to study in what extents the introduction of the polymer solution viscoelastic rheology during enhanced recovery process improves the mobilization of oil at pore scale. The influence of viscoelasticity on numerical solutions, as well as sweep efficiency of the medium, is compared to literature experimental results. On other hand, the mathematical model has been specialised to simulate the growth of a few hundred microns wide tumor aggregates. Since the precursor works of Steinberg the viscoelastic fluids analogy for cells aggregate is increasingly used for mathematical modelling. In this thesis, this similarity allows to study numerically the evolution of tumor aggregates in various environments. The biomechanical formulation of the problem permits to simulate cells population behaviour under mechanical load, which affects the growth rate according to the constraints in the system. In this context, the mathematical model is used to separate mechanical from biological effects, and provide original explanations on tumor growth in confined environment. The predictive capacity of the model on in vitro experiments shows the relevance of the viscoelastic multiphase flow for the tumor growth description
Abchir, Chakib. "Modélisation des écoulements dans les réservoirs souterrains avec prise en compte des interactions puits / réservoir (modélisation, simulation, étude mathématique)". Saint-Etienne, 1992. http://www.theses.fr/1992STET4010.
Texto completoDi, Meglio Florent. "Production de pétrole : étude dynamique et contrôle des écoulements à bouchons". Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00617949.
Texto completoBraconnier, Benjamin. "Modélisation numérique d'écoulements multiphasiques pour des fluides compressibles, non miscibles et soumis aux effets capillaires". Bordeaux 1, 2007. http://www.theses.fr/2007BOR13381.
Texto completoFranquet, Erwin. "Modélisation eulérienne d'écoulements multiphasiques en présence d'ondes de chocs, de détonations et d'interfaces matérielles. Application aux matériaux énergétiques nanostructurés". Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11026.
Texto completoStudy of heterogeneous energetic materials raises major difficulties: What is the dynamics of shock waves and detonation waves in such media? What is the analogous of the Chapman-Jouguet conditions for detonations in heterogeneous mixtures? How to introduce reactive effects and other exchanges in such flows? How to compute the non conservative hyperbolic equations systems associated with these flows? What are the characteristics of the nanomaterials? Thanks to new shock relations for multiphase mixtures with stiff mechanical relaxation, a flow model is established with heat exchanges and mass transfers in the case of two phases and then for an arbitrary number of phases. Next, capillary effects are introduced to be the expression of additional energy of nanostructured materials. The model finally permits to compute the structure and the analogous of the Chapman-Jouguet conditions for multiphase detonations. A new kind of numerical schemes is also built to compute the previous model. Based on a relaxation process in each computational cell, it does not suppose temperatures equilibrium in the cell as it is usually done with the Godunov method for Euler equations. The new method is then extended to multiphase flow model and is shown to allow computation of interface problems, shock waves and detonation waves in several dimensions
Capítulos de libros sobre el tema "Modélisation des écoulements multiphasiques"
"7 Modélisation des écoulements diphasiques en conduite". En Thermohydraulique des réacteurs, 231–74. EDP Sciences, 2008. http://dx.doi.org/10.1051/978-2-7598-0308-8.c009.
Texto completoCosandey, Claude y Mark Robinson. "Chapitre 7 - Mesures et modélisation des écoulements". En Hydrologie continentale, 279–322. Armand Colin, 2012. http://dx.doi.org/10.3917/arco.cosan.2012.01.0279.
Texto completoBATAILLE, Françoise, Adrien TOUTANT y Dorian DUPUY. "Simulations numériques des écoulements et transferts thermiques des récepteurs solaires". En Le solaire à concentration, 185–220. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9079.ch6.
Texto completoActas de conferencias sobre el tema "Modélisation des écoulements multiphasiques"
Saint-Cast, F., Bruno Castelle, Philippe Bonneton y JP Caltagirone. "Modélisation des écoulements induits par la houle sur les plages d'Aquitaine". En Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 2002. http://dx.doi.org/10.5150/jngcgc.2002.003-s.
Texto completo