Literatura académica sobre el tema "Modèles génératifs de séquences"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modèles génératifs de séquences".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Modèles génératifs de séquences"
Abi-Zeid, I. y B. Bobée. "La modélisation stochastique des étiages: une revue bibliographique". Revue des sciences de l'eau 12, n.º 3 (12 de abril de 2005): 459–84. http://dx.doi.org/10.7202/705360ar.
Texto completoDurand, Jacques. "La phonologie multidimensionnelle moderne et la description du français". Journal of French Language Studies 3, n.º 2 (septiembre de 1993): 197–229. http://dx.doi.org/10.1017/s0959269500001757.
Texto completoCommuniqué de la SIF. "ChatGPT et les modèles génératifs". Bulletin 1024, n.º 22 (noviembre de 2023): 41–44. http://dx.doi.org/10.48556/sif.1024.22.41.
Texto completoMoser, Klaus. "Les modèles d'effet publicitaire". Recherche et Applications en Marketing (French Edition) 13, n.º 1 (marzo de 1998): 25–34. http://dx.doi.org/10.1177/076737019801300102.
Texto completoValdois, Sylviane, Serge Carbonnel y Bernard Ans. "De l’orthographe à la prononciation : apport de la psychologie et de la neuropsychologie cognitives". Lidil 13, n.º 1 (1996): 41–65. http://dx.doi.org/10.3406/lidil.1996.1673.
Texto completoYakymchuk, Chris. "Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential". Geoscience Canada 44, n.º 1 (20 de abril de 2017): 27. http://dx.doi.org/10.12789/geocanj.2017.44.114.
Texto completoMarsault, Xavier y Hong Minh-Chau Nguyen. "Les GANs : stimulateurs de créativité en phase d’idéation". SHS Web of Conferences 147 (2022): 06003. http://dx.doi.org/10.1051/shsconf/202214706003.
Texto completoBouhon, Mathieu. "Logiques didactiques et problématisation des contenus dans l’activité de préparation de séquences des enseignants d’histoire". Nouveaux cahiers de la recherche en éducation 15, n.º 1 (4 de enero de 2013): 69–86. http://dx.doi.org/10.7202/1013380ar.
Texto completoPoutsiakas, Ilias. "Les processus génératifs bio-robotiques au service de l’aide à la conception pour l’architecture éco-responsable". SHS Web of Conferences 147 (2022): 07003. http://dx.doi.org/10.1051/shsconf/202214707003.
Texto completoGlath, Julien, Vincent Barazzutti, Antoine Bayard, Gaspard Leveque, Sosava Peka, Lancelot Senlis, Paul Thieffry, Marc Mimram y Olivier Baverel. "Concevoir et construire une structure réversible grâce aux assemblages non-séquentiels". SHS Web of Conferences 147 (2022): 09002. http://dx.doi.org/10.1051/shsconf/202214709002.
Texto completoTesis sobre el tema "Modèles génératifs de séquences"
Ponty, Yann. "Modélisation de séquences génomiques structurées, génération aléatoire et applications". Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00144130.
Texto completogénération aléatoire, d'évaluer la significativité d'un phénomène observé. Tout d'abord, nous nous intéressons aux propriétés des grammaires pondérées, un formalisme particulièrement adapté à la modélisation de la structure des ARN, dérivant des algorithmes de génération aléatoire efficaces implémentés au sein du prototype GenRGenS. Nous abordons le calcul automatique des pondérations réalisant des valeurs observées pour les paramètres du modèle, ainsi qu'une implémentation basée sur une approche optimisation. Dans un second temps, nous abordons la modélisation de la structure secondaire d'ARN. Après quelques rappels de biologie moléculaire, nous proposons plusieurs modèles basés sur des grammaires pondérées permettant la génération de structures d'ARN réalistes. L'utilisation d'un algorithme d'optimisation permet le calculer des pondérations correspondant à certaines familles d'ARN. Nous proposons enfin un algorithme d'extraction de structure secondaire maximale dans une structure générale, qui permet de profiter des données récentes issues de la cristallographie. Le dernier chapitre de cette thèse s'intéresse à l'analyse d'un algorithme de recherche de similarité heuristique, dont la sensibilité s'avère étroitement liée à la probabilité de présence d'un motif au sein de marches aléatoires particulières, les chemins culminants. Ces marches restent positives, et atteignent une altitude maximale en leur dernier pas. Nous proposons un algorithme récursif de génération aléatoire pour ces chemins. En combinant des techniques issues de la combinatoire énumérative, l'analyse asymptotique et la théorie des langages, nous dérivons des algorithmes de génération aléatoire par rejet linéaires dans de nombreux cas.
Ressencourt, Hervé. "Diagnostic hors-ligne à base de modèles : approche multi-modèle pour la génération automatique de séquences de tests : application au domaine de l'automobile". Toulouse 3, 2008. http://thesesups.ups-tlse.fr/2151/.
Texto completoThis thesis deals with the problem of off-board diagnosis in the automotive domain. The work has consisted in proposing and implementing an operational model based approach that determines the best sequences of tests to be performed by the garage mechanic to localise a faulty component on a vehicle. A multi-model approach is proposed for the description of mechatronic systems, which allows us to handle the functional complexity of embedded systems and to match functional symptoms with a set of faults on hardware / software components. The test sequencing problem is approached along a next best test strategy based on a local heuristic. This strategy enables an interactive diagnostic session, allowing more flexibility and leaving with the human operator the initiative to accept or reject the proposed test. A software prototype has been developed and tested on the rear wiper system of real vehicles. This thesis, supported by a CIFRE grant, is the result of collaboration between the company ACTIA and the research center LAAS-CNRS in the framework of the common laboratory Autodiag (LAAS, IRIT, ACTIA) which aims at developing new methods for diagnosis in the automotive domain
Tubiana, Jérôme. "Restricted Boltzmann machines : from compositional representations to protein sequence analysis". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE039/document.
Texto completoRestricted Boltzmann machines (RBM) are graphical models that learn jointly a probability distribution and a representation of data. Despite their simple architecture, they can learn very well complex data distributions such the handwritten digits data base MNIST. Moreover, they are empirically known to learn compositional representations of data, i.e. representations that effectively decompose configurations into their constitutive parts. However, not all variants of RBM perform equally well, and little theoretical arguments exist for these empirical observations. In the first part of this thesis, we ask how come such a simple model can learn such complex probability distributions and representations. By analyzing an ensemble of RBM with random weights using the replica method, we have characterised a compositional regime for RBM, and shown under which conditions (statistics of weights, choice of transfer function) it can and cannot arise. Both qualitative and quantitative predictions obtained with our theoretical analysis are in agreement with observations from RBM trained on real data. In a second part, we present an application of RBM to protein sequence analysis and design. Owe to their large size, it is very difficult to run physical simulations of proteins, and to predict their structure and function. It is however possible to infer information about a protein structure from the way its sequence varies across organisms. For instance, Boltzmann Machines can leverage correlations of mutations to predict spatial proximity of the sequence amino-acids. Here, we have shown on several synthetic and real protein families that provided a compositional regime is enforced, RBM can go beyond structure and extract extended motifs of coevolving amino-acids that reflect phylogenic, structural and functional constraints within proteins. Moreover, RBM can be used to design new protein sequences with putative functional properties by recombining these motifs at will. Lastly, we have designed new training algorithms and model parametrizations that significantly improve RBM generative performance, to the point where it can compete with state-of-the-art generative models such as Generative Adversarial Networks or Variational Autoencoders on medium-scale data
Cochard, Thomas. "Contribution à la génération de séquences pour la conduite de systèmes complexes critiques". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0355/document.
Texto completoThe works presented in this manuscript deals with critical complex systems operation. They are part of the CONNEXION project (Investissements d'Avenir, BGLE2), which involves the main actors in the French nuclear industry around the design of control systems for power plants and their operation. In the operation field, the actions developed by the project concern the engineering phase with the aim of integrating the operator's point of view as soon as possible in the validation of control architectures, and the operation phase with the aim of providing assistance in the preparation and execution of operation procedures. In this context, the contribution presented in this manuscript deals with the generation and verification of action sequences that meet a given objective and that can be safely operated on the process. The proposed approach relies on verifying a reachability property on a network of timed automata modelling the behavior of architectures. The originality is in the definition of a formal modelling framework using patterns promoting the reusability of models, as well as in the proposition of abstraction and reachability iterative analysis algorithms exploiting the intrinsic hierarchization of architectures in order to scale-up of the proposed approach. The contribution was evaluated on the CISPI experimental platform of the CRAN, and on an industrial scale case study proposed within the framework of the CONNEXION project
Shimagaki, Kai. "Advanced statistical modeling and variable selection for protein sequences". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS548.
Texto completoOver the last few decades, protein sequencing techniques have been developed and continuous experiments have been done. Thanks to all of these efforts, nowadays, we have obtained more than two hundred million protein sequence data. In order to deal with such a huge amount of biological data, now, we need theories and technologies to extract information that we can understand and interpret.The key idea to resolve this problem is statistical physics and the state of the art of machine learning (ML). Statistical physics is a field of physics that can successfully describe many complex systems by extracting or reducing variables to be interpretable variables based on simple principles. ML, on the other hand, can represent data (such as reconstruction and classification) without assuming how the data was generated, i.e. physical phenomenon behind of data. In this dissertation, we report studies of protein sequence generative modeling and protein-residue contact predictions using statistical physics-inspired modeling and ML-oriented methods. In the first part, we review the general background of biology and genomics. Then we discuss statistical modelings for protein sequence. In particular, we review Direct Coupling Analysis (DCA), which is the core technology of our research. We also discuss the effects of higher-order statistics contained in protein sequences and introduces deep learning-based generative models as a model that can go beyond pairwise interaction
Lucas, Thomas. "Modèles génératifs profonds : sur-généralisation et abandon de mode". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM049.
Texto completoThis dissertation explores the topic of generative modelling of natural images,which is the task of fitting a data generating distribution.Such models can be used to generate artificial data resembling the true data, or to compress images.Latent variable models, which are at the core of our contributions, seek to capture the main factors of variations of an image into a variable that can be manipulated.In particular we build on two successful latent variable generative models, the generative adversarial network (GAN) and Variational autoencoder (VAE) models.Recently GANs significantly improved the quality of images generated by deep models, obtaining very compelling samples.Unfortunately these models struggle to capture all the modes of the original distribution, ie they do not cover the full variability of the dataset.Conversely, likelihood based models such as VAEs typically cover the full variety of the data well and provide an objective measure of coverage.However these models produce samples of inferior visual quality that are more easily distinguished from real ones.The work presented in this thesis strives for the best of both worlds: to obtain compelling samples while modelling the full support of the distribution.To achieve that, we focus on i) the optimisation problems used and ii) practical model limitations that hinder performance.The first contribution of this manuscript is a deep generative model that encodes global image structure into latent variables, built on the VAE, and autoregressively models low level detail.We propose a training procedure relying on an auxiliary loss function to control what information is captured by the latent variables and what information is left to an autoregressive decoder.Unlike previous approaches to such hybrid models, ours does not need to restrict the capacity of the autoregressive decoder to prevent degenerate models that ignore the latent variables.The second contribution builds on the standard GAN model, which trains a discriminator network to provide feedback to a generative network.The discriminator usually assesses the quality of individual samples, which makes it hard to evaluate the variability of the data.Instead we propose to feed the discriminator with emph{batches} that mix both true and fake samples, and train it to predict the ratio of true samples in the batch.These batches work as approximations of the distribution of generated images and allows the discriminator to approximate distributional statistics.We introduce an architecture that is well suited to solve this problem efficiently,and show experimentally that our approach reduces mode collapse in GANs on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets.The mutual shortcomings of VAEs and GANs can in principle be addressed by training hybrid models that use both types of objective.In our third contribution, we show that usual parametric assumptions made in VAEs induce a conflict between them, leading to lackluster performance of hybrid models.We propose a solution based on deep invertible transformations, that trains a feature space in which usual assumptions can be made without harm.Our approach provides likelihood computations in image space while being able to take advantage of adversarial training.It obtains GAN-like samples that are competitive with fully adversarial models while improving likelihood scores over existing hybrid models at the time of publication, which is a significant advancement
Hadjeres, Gaëtan. "Modèles génératifs profonds pour la génération interactive de musique symbolique". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS027/document.
Texto completoThis thesis discusses the use of deep generative models for symbolic music generation. We will be focused on devising interactive generative models which are able to create new creative processes through a fruitful dialogue between a human composer and a computer. Recent advances in artificial intelligence led to the development of powerful generative models able to generate musical content without the need of human intervention. I believe that this practice cannot be thriving in the future since the human experience and human appreciation are at the crux of the artistic production. However, the need of both flexible and expressive tools which could enhance content creators' creativity is patent; the development and the potential of such novel A.I.-augmented computer music tools are promising. In this manuscript, I propose novel architectures that are able to put artists back in the loop. The proposed models share the common characteristic that they are devised so that a user can control the generated musical contents in a creative way. In order to create a user-friendly interaction with these interactive deep generative models, user interfaces were developed. I believe that new compositional paradigms will emerge from the possibilities offered by these enhanced controls. This thesis ends on the presentation of genuine musical projects like concerts featuring these new creative tools
Hadjeres, Gaëtan. "Modèles génératifs profonds pour la génération interactive de musique symbolique". Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS027.
Texto completoThis thesis discusses the use of deep generative models for symbolic music generation. We will be focused on devising interactive generative models which are able to create new creative processes through a fruitful dialogue between a human composer and a computer. Recent advances in artificial intelligence led to the development of powerful generative models able to generate musical content without the need of human intervention. I believe that this practice cannot be thriving in the future since the human experience and human appreciation are at the crux of the artistic production. However, the need of both flexible and expressive tools which could enhance content creators' creativity is patent; the development and the potential of such novel A.I.-augmented computer music tools are promising. In this manuscript, I propose novel architectures that are able to put artists back in the loop. The proposed models share the common characteristic that they are devised so that a user can control the generated musical contents in a creative way. In order to create a user-friendly interaction with these interactive deep generative models, user interfaces were developed. I believe that new compositional paradigms will emerge from the possibilities offered by these enhanced controls. This thesis ends on the presentation of genuine musical projects like concerts featuring these new creative tools
Chevrier, Christophe. "Test de conformité de protocoles de communication modèle de fautes et génération automatique de séquences de tests". Bordeaux 1, 1996. http://www.theses.fr/1996BOR10503.
Texto completoFranceschi, Jean-Yves. "Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS014.
Texto completoThe recent rise of deep learning has been motivated by numerous scientific breakthroughs, particularly regarding representation learning and generative modeling. However, most of these achievements have been obtained on image or text data, whose evolution through time remains challenging for existing methods. Given their importance for autonomous systems to adapt in a constantly evolving environment, these challenges have been actively investigated in a growing body of work. In this thesis, we follow this line of work and study several aspects of temporality and dynamical systems in deep unsupervised representation learning and generative modeling. Firstly, we present a general-purpose deep unsupervised representation learning method for time series tackling scalability and adaptivity issues arising in practical applications. We then further study in a second part representation learning for sequences by focusing on structured and stochastic spatiotemporal data: videos and physical phenomena. We show in this context that performant temporal generative prediction models help to uncover meaningful and disentangled representations, and conversely. We highlight to this end the crucial role of differential equations in the modeling and embedding of these natural sequences within sequential generative models. Finally, we more broadly analyze in a third part a popular class of generative models, generative adversarial networks, under the scope of dynamical systems. We study the evolution of the involved neural networks with respect to their training time by describing it with a differential equation, allowing us to gain a novel understanding of this generative model
Capítulos de libros sobre el tema "Modèles génératifs de séquences"
SAMAIN, Didier. "Séquences et bifurcations". En Le prévisible et l’imprévisible, 179–92. Editions des archives contemporaines, 2023. http://dx.doi.org/10.17184/eac.7079.
Texto completoPARDOUX, Étienne. "Modèles d’évolution pour les séquences et les caractères discrets". En Modèles et méthodes pour l’évolution biologique, 33–45. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9069.ch2.
Texto completoBOUNTZIS, Polyzois, Eleftheria PAPADIMITRIOU y George TSAKLIDIS. "Processus d’arrivée markoviens pour l’analyse du regroupement des tremblements de terre". En Méthodes et modèles statistiques pour la sismogenèse, 253–83. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9037.ch9.
Texto completoPONTY, Yann y Vladimir REINHARZ. "Repliement de l’ARN". En Des séquences aux graphes, 187–229. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9066.ch6.
Texto completoPARDI, Fabio. "Inférence phylogénétique : méthodes basées sur les distances". En Modèles et méthodes pour l’évolution biologique, 151–76. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9069.ch6.
Texto completoSHEBALIN, Peter y Sergey BARANOV. "Lois statistiques de l’activité post-sismique". En Méthodes et modèles statistiques pour la sismogenèse, 71–114. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9037.ch3.
Texto completoActas de conferencias sobre el tema "Modèles génératifs de séquences"
Beyaert-Geslin, Anne. "Faire un point". En Arts du faire : production et expertise. Limoges: Université de Limoges, 2009. http://dx.doi.org/10.25965/as.3232.
Texto completo